Local Orthorhombicity in the Magnetic C_{4} Phase of the Hole-Doped Iron-Arsenide Superconductor Sr_{1-x}Na_{x}Fe_{2}As_{2}.

Title Local Orthorhombicity in the Magnetic C_{4} Phase of the Hole-Doped Iron-Arsenide Superconductor Sr_{1-x}Na_{x}Fe_{2}As_{2}.
Authors B.A. Frandsen; K.M. Taddei; M. Yi; A. Frano; Z. Guguchia; R. Yu; Q. Si; D.E. Bugaris; R. Stadel; R. Osborn; S. Rosenkranz; O. Chmaissem; R.J. Birgeneau
Journal Phys Rev Lett
DOI 10.1103/PhysRevLett.119.187001
Abstract

We report on temperature-dependent pair distribution function measurements of Sr_{1-x}Na_{x}Fe_{2}As_{2}, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C_{4} phase. Quantitative refinements indicate that the instantaneous local structure in the C_{4} phase comprises fluctuating orthorhombic regions with a length scale of ?2??nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C_{4} phase and the neighboring C_{2} and superconducting phases.

Citation B.A. Frandsen; K.M. Taddei; M. Yi; A. Frano; Z. Guguchia; R. Yu; Q. Si; D.E. Bugaris; R. Stadel; R. Osborn; S. Rosenkranz; O. Chmaissem; R.J. Birgeneau.Local Orthorhombicity in the Magnetic C_{4} Phase of the Hole-Doped Iron-Arsenide Superconductor Sr_{1-x}Na_{x}Fe_{2}As_{2}.. Phys Rev Lett. 2017;119(18):187001. doi:10.1103/PhysRevLett.119.187001

Related Elements

Arsenic

See more Arsenic products. Arsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. Arsenic Bohr ModelThe number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid. Elemental ArsenicArsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Related Forms & Applications