Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050.

Title Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050.
Authors T.M. Kremmer; P. Dumitraschkewitz; D. Pöschmann; T. Ebner; P.J. Uggowitzer; G.K.H. Kolb; S. Pogatscher
Journal Materials (Basel)
DOI 10.3390/ma13112554
Abstract

This study reports on the effect of interrupted quenching on the microstructure and mechanical properties of plates made of the AlZnMg(Cu) alloy AA7050. Rapid cooling from the solution heat treatment temperature is interrupted at temperatures between 100 and 200 °C and continued with a very slow further cooling to room temperature. The final material's condition is achieved without or with subsequent artificial ageing. The results show that an improvement in the strength-toughness trade-off can be obtained by using this method. Interrupted quenching at 125 °C with peak artificial ageing leads to a yield strength increase of 27 MPa (538 MPa to 565 MPa) compared to the reference material at the same fracture toughness level. A further special case is the complete omission of an artificial ageing treatment with interrupted quenching at 200 °C. This heat treatment exhibits an 20% increase in fracture toughness (35 to 42 MPa m) while retaining a sufficient yield strength of 512 MPa for industrial applications. A detailed characterization of the relevant microstructural parameters like present phases, phase distribution and precipitate-free zones is performed using transmission electron microscopy and atom probe tomography.

Citation T.M. Kremmer; P. Dumitraschkewitz; D. Pöschmann; T. Ebner; P.J. Uggowitzer; G.K.H. Kolb; S. Pogatscher.Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050.. Materials (Basel). 2020;13(11). doi:10.3390/ma13112554

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Zinc

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.

Related Forms & Applications