Microstructure and Chemo-Physical Characterizations of Functional Graphene Oxide-Iron Oxide-Silver Ternary Nanocomposite Synthesized by One-Pot Hydrothermal Method.

Title Microstructure and Chemo-Physical Characterizations of Functional Graphene Oxide-Iron Oxide-Silver Ternary Nanocomposite Synthesized by One-Pot Hydrothermal Method.
Authors P.Thi Lan Huong; T. Van Son; V.Ngoc Phan; L.Thi Tam; A.T. Le
Journal J Nanosci Nanotechnol
DOI 10.1166/jnn.2018.15406
Abstract

In this work, a functional graphene oxide-iron oxide-silver (GO-Fe3O4-Ag) ternary nanocomposite was synthesized by using one-pot hydrothermal treatments of mixture solutions of silver nitrate (AgNO3), ferrous chloride tetrahydrate (FeCl2 4H2O), polyvinylpyrrolidone (PVP), graphene oxide (GO), and ammonium hydroxide solution (NH4OH). The systematic effects of synthesis conditions on the microstructure and formation of binary and ternary composite systems were studied. Importantly, high-crystalline GO-Fe3O4-Ag ternary nanomaterials with average sizes of Fe3O4 particles ~16 nm and of Ag particles ~20 nm were obtained at optimized conditions (125 °C, 2.5 mM of AgNO3 and 5 mL of NH4OH). Magnetic analysis indicated that the saturated magnetization value of Fe3O4-Ag binary composite sample (~73.1 emu/g) was improved as compared with pure Fe3O4 nanoparticles (~60.6 emu/g), while this of GO-Fe3O4-Ag ternary composite sample was about 57.3 emu/g. With exhibited advantages of low-cost, high purity and short synthesis time, the hydrothermal-synthesized GO-Fe3O4-Ag ternary nanocomposite can be a promising candidate for advanced environmental catalyst and biomedical applications.

Citation P.Thi Lan Huong; T. Van Son; V.Ngoc Phan; L.Thi Tam; A.T. Le.Microstructure and Chemo-Physical Characterizations of Functional Graphene Oxide-Iron Oxide-Silver Ternary Nanocomposite Synthesized by One-Pot Hydrothermal Method.. J Nanosci Nanotechnol. 2018;18(8):55915599. doi:10.1166/jnn.2018.15406

Related Elements

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Related Forms & Applications