Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide.

Title Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide.
Authors K.F. Lee; C.J. Hensley; P.G. Schunemann; M.E. Fermann
Journal Opt Express
DOI 10.1364/OE.25.017411
Abstract

We generate over 60 mW of pulses with wavelengths from 6 to 11 micrometers by difference frequency mixing between erbium and thulium fiber amplifiers in orientation-patterned GaP with a photon conversion efficiency of 0.2. By stabilizing the repetition rate of the shared oscillator and adding a frequency shifter to one arm, the output becomes a frequency comb with tunable carrier envelope offset.

Citation K.F. Lee; C.J. Hensley; P.G. Schunemann; M.E. Fermann.Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide.. Opt Express. 2017;25(15):1741117416. doi:10.1364/OE.25.017411

Related Elements

Erbium

See more Erbium products. Erbium (atomic symbol: Er, atomic number: 68) is a Block F, Group 3, Period 6 element with an atomic radius of 167.259. Erbium Bohr ModelThe number of electrons in each of Erbium's shells is [2, 8, 18, 30, 8, 2] and its electron configuration is [Xe]4f12 6s2. The erbium atom has a radius of 176 pm and a Van der Waals radius of 235 pm. Erbium was discovered by Carl Mosander in 1843. Sources of Erbium include the mineral monazite and sand ores. Erbium is a member of the lanthanide or rare earth series of elements.Elemental Erbium Picture In its elemental form, erbium is soft and malleable. It is fairly stable in air and does not oxidize as rapidly as some of the other rare earth metals. Erbium's ions fluoresce in a bright pink color, making them highly useful for imaging and optical applications. It is named after the Swedish town Ytterby where it was first discovered.

Gallium

See more Gallium products. Gallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor devices for microelectronics and optics. The element name originates from the Latin word 'Gallia' referring to Gaul, the old name of France.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Thulium

See more Thulium products. Thulium (atomic symbol: Tm, atomic number: 69) is a Block F, Group 3, Period 6 element with an atomic weight of 168.93421. Thulium Bohr ModelThe number of electrons in each of Thulium's shells is [2, 8, 18, 31, 8, 2] and its electron configuration is [Xe]4f136s2. The thulium atom has a radius of 176 pm and a Van der Waals radius of 227 pm.Elemental Thulium Picture In its elemental form, thulium has a silvery-gray appearance. Thulium is representative of the other lanthanides (rare earths) and similar in chemistry to yttrium. It is the least abundant of the rare earth elements. Thulium emits blue upon excitation, and is used in flat panel screens that depend critically on bright blue emitters. Thulium was discovered and first isolated by Per Teodor Cleve in 1879. It is named after "Thule," which is the ancient name of Scandinavia.

Related Forms & Applications