MOF-Derived Cobalt Phosphide/Carbon Nanocubes for Selective Hydrogenation of Nitroarenes to Anilines.

Title MOF-Derived Cobalt Phosphide/Carbon Nanocubes for Selective Hydrogenation of Nitroarenes to Anilines.
Authors S. Yang; L. Peng; E. Oveisi; S. Bulut; D.T. Sun; M. Asgari; O. Trukhina; W.L. Queen
Journal Chemistry
DOI 10.1002/chem.201705400
Abstract

Transition-metal phosphides have received tremendous attention during the past few years because they are earth-abundant, cost-effective, and show outstanding catalytic performance in several electrochemically driven conversions including hydrogen evolution, oxygen evolution, and water splitting. As one member of the transition-metal phosphides, Cox P-based materials have been widely explored as electrocatalyts; however, their application in the traditional thermal catalysis are rarely reported. In this work, cobalt phosphide/carbon nanocubes are designed and their catalytic activity for the selective hydrogenation of nitroarenes to anilines is studied. A high surface area metal-organic framework (MOF), ZIF-67, is infused with red phosphorous, and then pyrolysis promotes the facile production of the phosphide-based catalysts. The resulting composite, consisting of Co2 P/CNx nanocubes, is shown to exhibit excellent catalytic performance in the selective hydrogenation of nitroarenes to anilines. To the best of our knowledge, this is the first report showing catalytic activity of a cobalt phosphide in nitroarenes hydrogenation.

Citation S. Yang; L. Peng; E. Oveisi; S. Bulut; D.T. Sun; M. Asgari; O. Trukhina; W.L. Queen.MOF-Derived Cobalt Phosphide/Carbon Nanocubes for Selective Hydrogenation of Nitroarenes to Anilines.. Chemistry. 2017. doi:10.1002/chem.201705400

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications