Molybdenum Rhenium Alloy Sputtering Target

Linear Formula:

Mo/Re

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Molybdenum Rhenium Alloy Sputtering Target
MO-RE-02-ST
Pricing > SDS > Data Sheet >
(3N) 99.9% Molybdenum Rhenium Alloy Sputtering Target
MO-RE-03-ST
Pricing > SDS > Data Sheet >
(4N) 99.99% Molybdenum Rhenium Alloy Sputtering Target
MO-RE-04-ST
Pricing > SDS > Data Sheet >
(5N) 99.999% Molybdenum Rhenium Alloy Sputtering Target
MO-RE-05-ST
Pricing > SDS > Data Sheet >

Molybdenum Rhenium Alloy Sputtering Target Properties (Theoretical)

Compound Formula MoRe
Appearance Metallic solid
Melting Point 2507 °C
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Monoisotopic Mass 284.861 g/mol

Molybdenum Rhenium Alloy Sputtering Target Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information NONH for all modes of transport

About Molybdenum Rhenium Alloy Sputtering Target

American Elements specializes in producing high purity Molybdenum Rhenium Alloy Sputtering Targets with the highest possible density High Purity (99.99%) Molybdenum Rhenium Alloy Sputtering Targetand smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard sputtering targets for thin film deposition are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Rotary (cylindrical), round, rectangular, square, ring, annular, oval, "dog-bone" and other shaped targets are available in standard, custom, and research sized dimensions. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. Please request a quote above for more information on lead time and pricing.

Molybdenum Rhenium Alloy Sputtering Target Synonyms

Molybdenum-rhenium, 60719-51-9, Mo:Re 59:41, 52.5:47.5

Chemical Identifiers

Linear Formula Mo/Re
MDL Number N/A
EC No. N/A
Pubchem CID 9993894
IUPAC Name molybdenum; rhenium
SMILES [Mo].[Re]
InchI Identifier InChI=1S/Mo.Re
InchI Key NZPGFUCQQUDSQG-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Payment Methods

American Elements accepts checks, wire transfers, ACH, most major credit and debit cards (Visa, MasterCard, AMEX, Discover) and Paypal.

For the convenience of our international customers, American Elements offers the following additional payment methods:

SOFORT bank tranfer payment for Austria, Belgium, Germany and SwitzerlandJCB cards for Japan and WorldwideBoleto Bancario for BraziliDeal payments for the Netherlands, Germany, Austria, Belgium, Italy, Poland, Spain, Switzerland, and the United KingdomGiroPay for GermanyDankort cards for DenmarkElo cards for BrazileNETS for SingaporeCartaSi for ItalyCarte-Bleue cards for FranceChina UnionPayHipercard cards for BrazilTROY cards for TurkeyBC cards for South KoreaRuPay for India

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Rhenium

See more Rhenium products. Rhenium (atomic symbol: Re, atomic number: 75) is a Block D, Group 7, Period 6 element with an atomic weight of 186.207. The number of electrons in each of rhenium's shells is 2, 8, 18, 32, 13, 2 and its electron configuration is [Xe] 4f14 5d5 6s2. Rhenium Bohr ModelThe rhenium atom has a radius of 137 pm and a Van der Waals radius of 217 pm. Rhenium was discovered and first isolated by Masataka Ogawa in 1908. In its elemental form, rhenium has a silvery-white appearance. Rhenium is the fourth densest element exceeded only by platinum, iridium, and osmium. Rhenium's high melting point is exceeded only by those of tungsten and carbon.Elemental Rhenium Rhenium is found in small amounts in gadolinite and molybdenite. It is usually extracted from the flue dusts of molybdenum smelters. The name Rhenium originates from the Latin word 'Rhenus' meaning "Rhine" after the place of discovery.

TODAY'S TOP DISCOVERY!

November 21, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions