Nano-cerium oxide functionalized biochar for phosphate retention: preparation, optimization and rice paddy application.

Title Nano-cerium oxide functionalized biochar for phosphate retention: preparation, optimization and rice paddy application.
Authors Y. Feng; H. Lu; Y. Liu; L. Xue; D.D. Dionysiou; L. Yang; B. Xing
Journal Chemosphere
DOI 10.1016/j.chemosphere.2017.07.107
Abstract

In this study, nano-cerium oxide functionalized maize straw biochar (Ce-MSB) was prepared and utilized to remove P from agricultural wastewater. Response Surface Model was applied to optimize the operating conditions. Moreover, Ce-MSB was applied to actual rice paddy column for the first time. Response Surface Model (RSM) showed higher materials ratio had positive effect on PO4(3-) adsorption capacity, while higher pyrolysis temperature had negative effect. The maximum adsorption capacity of Ce-MSB for PO4(3-) was 78 mg g(-1), implying that Ce-MSB was an effective functionalized adsorbent for P removal. Paddy soil column experiment showed that application of Ce-MSB decreased total phosphorus concentration of surface water by 27.33% and increased total phosphors (TP) content of top soil by 7.22%. Further, Ce-MSB tends to increase rice plant height and leaf area. Therefore, Ce-MSB can be used as a promising functionalized biochar to reduce the risk of phosphorus loss from paddy field surface running water.

Citation Y. Feng; H. Lu; Y. Liu; L. Xue; D.D. Dionysiou; L. Yang; B. Xing.Nano-cerium oxide functionalized biochar for phosphate retention: preparation, optimization and rice paddy application.. Chemosphere. 2017;185:816825. doi:10.1016/j.chemosphere.2017.07.107

Related Elements

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications