Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic.

Title Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic.
Authors G.A.C. Springall; L. Yin
Journal J Mech Behav Biomed Mater
DOI 10.1016/j.jmbbm.2018.03.010
Abstract

This paper reports on the mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic (ZLS) using nanoindentation with a Berkovich diamond tip and in situ scanning probe microscopy (SPM). The indentation contact hardness, the elastic modulus, and the elasticity and plasticity of the material were determined using the Oliver-Pharr method, the Sakai model and the Meyer's law at peak loads of 2.5-10?mN and a loading rate of 0.5?mN/s. The load-displacement curves at all applied loads indicate that ZLS deformed plastically without fracture. The discrete discontinuities in the load-displacement curves might have arisen from the shear plane activation for plastic deformation. The measured hardness and elastic modulus were load-independent (ANOVA, p?>?0.05), in ranges of 8.17?±?1.23?GPa to 9.86?±?1.24?GPa and 98.55?±?7.38?GPa to 105.78?±?9.98?GPa, respectively. The resistance to plasticity of ZLS significantly showed a second-order polynomial load relationship or a power law load dependency. Meanwhile, both the elastic and plastic displacements also significantly revealed power law load dependencies. However, the elastic and plastic deformation components were load-independent. Increased indentation loads resulted in significant decreases in the normalized elastic strain energy (p?

Citation G.A.C. Springall; L. Yin.Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic.. J Mech Behav Biomed Mater. 2018;82:3544. doi:10.1016/j.jmbbm.2018.03.010

Related Elements

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Related Forms & Applications