Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol.

Title Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol.
Authors X. Shao; X. Yin; J. Wang
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.10.057
Abstract

Cubic perovskite-type and octahedral pyrochlore-type powders of potassium tantalate (KTaO) were selectively synthesized by a single-step hydrothermal method under different concentrations of potassium hydroxide (KOH). The obtained photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and UV-vis absorption spectra (UV-vis). The photocatalytic activities of the KTaO samples for reduction of carbon dioxide to methanol under UV light irradiation were investigated. The results showed that the KOH concentration played a significant role in determining the phases of the resultant products. Compared with the cubic crystalline structure, the octahedral crystalline structure exhibited the higher photocatalytic activity. In addition, the photocatalytic activities of KTaO were obviously increased when a small amount of nickel oxide (NiO) was loaded as a co-catalyst. The highest rate of methanol formation was 1815??mol/g/h when 2?wt% of NiO was loaded.

Citation X. Shao; X. Yin; J. Wang.Nanoheterostructures of potassium tantalate and nickel oxide for photocatalytic reduction of carbon dioxide to methanol in isopropanol.. J Colloid Interface Sci. 2018;512:466473. doi:10.1016/j.jcis.2017.10.057

Related Elements

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Potassium

Elemental PotassiumSee more Potassium products. Potassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. As with other alkali metals, potassium decomposes in water with the evolution of hydrogen because of its reacts violently with water, it only occurs in nature in ionic salts.Potassium Bohr Model In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word qali, which means alkali. The symbol K originates from the Latin word kalium.

Tantalum

See more Tantalum products. Tantalum (atomic symbol: Ta, atomic number: 73) is a Block D, Group 5, Period 6 element with an atomic weight of 180.94788. Tantalum Bohr ModelThe number of electrons in each of tantalum's shells is [2, 8, 18, 32, 11, 2] and its electron configuration is [Xe] 4f14 5d3 6s2. The tantalum atom has a radius of 146 pm and a Van der Waals radius of 217 pm. High Purity (99.999%) Tantalum (Ta) MetalTantalum was first discovered by Anders G. Ekeberg in 1802 in Uppsala, Sweden however, it was not until 1844 when Heinrich Rose first recognized it as a distinct element. In its elemental form, tantalum has a grayish blue appearance. Tantalum is found in the minerals tantalite, microlite, wodginite, euxenite, and polycrase. Due to the close relation of tantalum to niobium in the periodic table, Tantalum's name originates from the Greek word Tantalos meaning Father of Niobe in Greek mythology.

Related Forms & Applications