Nanohybrid of Carbon Quantum Dots/Molybdenum Phosphide Nanoparticle for Efficient Electrochemical Hydrogen Evolution in Alkaline Medium.

Title Nanohybrid of Carbon Quantum Dots/Molybdenum Phosphide Nanoparticle for Efficient Electrochemical Hydrogen Evolution in Alkaline Medium.
Authors L. Zhang; Y. Yang; M.Asad Ziaee; K. Lu; R. Wang
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.8b00211
Abstract

The exploration of highly efficient non-noble metal electrocatalysts for hydrogen evolution reaction (HER) under alkaline conditions is highly imperative but still remains a great challenge. In this work, the nanohybrid of carbon quantum dots and molybdenum phosphide nanoparticle (CQDs/MoP) has been firstly demonstrated as an efficient alkaline HER electrocatalyst. The CQDs/MoP nanohybrid is readily prepared through a charge-directed self-assembly of CQDs with phosphomolybdic acid (HPMoO) at the molecular level, followed by facile phosphatizing at 700 °C. The introduction of CQDs greatly helps to alleviate the agglomeration and surface oxidation of MoP nanoparticles and ensures each MoP nanoparticle to be electronically addressed, thus significantly enhancing the intrinsic catalytic activity of MoP. The optimized CQDs/MoP exhibits high-efficiency synergistic catalysis toward HER in 1 M KOH electrolyte with a low onset potential of -0.08 V and a small Tafel slope of 56 mV decas well as high durability with negligible current loss for at least 24 h.

Citation L. Zhang; Y. Yang; M.Asad Ziaee; K. Lu; R. Wang.Nanohybrid of Carbon Quantum Dots/Molybdenum Phosphide Nanoparticle for Efficient Electrochemical Hydrogen Evolution in Alkaline Medium.. ACS Appl Mater Interfaces. 2018. doi:10.1021/acsami.8b00211

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications