Near-Infrared Upconversion Mesoporous Cerium Oxide Hollow Biophotocatalyst for Concurrent pH-/H2 O2 -Responsive O2 -Evolving Synergetic Cancer Therapy.

Title Near-Infrared Upconversion Mesoporous Cerium Oxide Hollow Biophotocatalyst for Concurrent pH-/H2 O2 -Responsive O2 -Evolving Synergetic Cancer Therapy.
Authors C. Yao; W. Wang; P. Wang; M. Zhao; X. Li; F. Zhang
Journal Adv Mater
DOI 10.1002/adma.201704833
Abstract

Tumor hypoxia is typically presented in the central region of solid tumors, which is mainly caused by an inadequate blood flow and oxygen supply. In the conventional treatment of hypoxic human tumors, not only the oxygen-dependent photodynamic therapy (PDT), but also antitumor drug-based chemotherapy, is considerably limited. The use of direct oxygen delivering approach with oxygen-dependent PDT or chemotherapy may potentiate the reactive oxygen species (ROS)-mediated cytotoxicity of the drug toward normal tissues. Herein, a synergetic one-for-all mesoporous cerium oxide upconversion biophotocatalyst is developed to achieve intratumorally endogenous H2 O2 -responsive self-sufficiency of O2 and near-infrared light controlled PDT simultaneously for overcoming hypoxia cancer. Furthermore, the sufficient O2 plays an important role in overcoming the chemotherapeutic drug-resistant cancer caused by hypoxia, therefore inducing tumor cell apoptosis significantly.

Citation C. Yao; W. Wang; P. Wang; M. Zhao; X. Li; F. Zhang.Near-Infrared Upconversion Mesoporous Cerium Oxide Hollow Biophotocatalyst for Concurrent pH-/H2 O2 -Responsive O2 -Evolving Synergetic Cancer Therapy.. Adv Mater Weinheim. 2018. doi:10.1002/adma.201704833

Related Elements

Cerium

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is therefore strongly acidic and oxidizing, in addition to being moderately toxic.The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilhelm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres, which itself was named after the Roman god of agriculture.

Related Forms & Applications