Niobium treated by Plasma Electrolytic Oxidation with calcium and phosphorus electrolytes.

Title Niobium treated by Plasma Electrolytic Oxidation with calcium and phosphorus electrolytes.
Authors B.Leandro Pereira; A.Rossetto da Luz; C.Maurício Lepienski; I. Mazzaro; N.Kazue Kuromoto
Journal J Mech Behav Biomed Mater
DOI 10.1016/j.jmbbm.2017.08.010
Abstract

Niobium plates were electrochemically treated by Plasma Electrolytic Oxidation (PEO) with electrolytes containing phosphorous and/or calcium. Three different electrolyte and experimental parameters were used forming three different surfaces. Film morphology, thickness, and chemical composition were analyzed by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A profilometer and the sessile drop technique measured the average surfaces roughness (Ra) and contact angles respectively. X-ray diffraction technique (XRD) analyzed the oxide crystallinity, and scratch tests evaluated the film adhesion. All oxidized surfaces presented pores, without observed cracks. Comparing the different experimental conditions, films obtained with phosphoric acid (P100) show superficial pores, phosphorus incorporation, high hydrophilicity, non-crystalline oxide formation, and good scratch resistance. Films treated with calcium acetate electrolyte (Ca100), compared to P100 exhibit smaller size pores and film thickness, smaller hydrophilicity, and lower scratch resistance. They also demonstrated higher oxide crystallinity, calcium incorporation, and pores interconnections. When the PEO was executed with a blended electrolyte containing calcium acetate and phosphoric acid (Ca50P50) the formed films presented the highest thickness, high phosphorus incorporation, and the lowest contact angle compared with other films. In addition, the pores size, the scratch resistance, calcium incorporation, and oxide crystallinity present intermediate values compared to P100 and Ca100 films. Film crystallinity seems to be influenced by calcium incorporation, whereas, hydrophilicity is phosphorus amount dependent. The pores amount and their interconnections reduced the scratch resistance. Surface features obtained in this work are largely mentioned as positive characteristics for osseointegration processes.

Citation B.Leandro Pereira; A.Rossetto da Luz; C.Maurício Lepienski; I. Mazzaro; N.Kazue Kuromoto.Niobium treated by Plasma Electrolytic Oxidation with calcium and phosphorus electrolytes.. J Mech Behav Biomed Mater. 2018;77:347352. doi:10.1016/j.jmbbm.2017.08.010

Related Elements

Niobium

See more Niobium products. Niobium (atomic symbol: Nb, atomic number: 41) is a Block D, Group 5, Period 5 element with an atomic weight of 92.90638. Niobium Bohr ModelThe number of electrons in each of niobium's shells is 2, 8, 18, 12, 1 and its electron configuration is [Kr] 4d4 5s1. The niobium atom has a radius of 146 pm and a Van der Waals radius of 207 pm. Niobium was discovered by Charles Hatchett in 1801 and first isolated by Christian Wilhelm Blomstrand in 1864. In its elemental form, niobium has a gray metallic appearance. Niobium has the largest magnetic penetration depth of any element and is one of three elemental type-II superconductors (Elemental Niobiumalong with vanadium and technetium). Niobium is found in the minerals pyrochlore, its main commercial source, and columbite. The word Niobium originates from Niobe, daughter of mythical Greek king Tantalus.

Calcium

See more Calcium products. Calcium (atomic symbol: Ca, atomic number: 20) is a Block S, Group 2, Period 4 element with an atomic weight of 40.078. The number of electrons in each of Calcium's shells is [2, 8, 8, 2] and its electron configuration is [Ar]4s2. Calcium Bohr ModelThe calcium atom has a radius of 197 pm and a Van der Waals radius of 231 pm. Calcium was discovered and first isolated by Sir Humphrey Davy in 1808. It is the fifth most abundant element in the earth's crust and can be found in minerals such as dolomite, gypsum, plagioclases, amphiboles, pyroxenes and garnets. In its elemental form, calcium has a dull gray-silver appearance. Calcium is a reactive, soft metal that is a member of the alkaline earth elements. Elemental CalciumIt frequently serves as an alloying agent for other metals like aluminum and beryllium, and industrial materials like cement and mortar are composed of calcium compounds like calcium carbonate. It is also an biologically essential substance found in teeth, bones, and shells. The name "calcium" originates from the Latin word "calics," meaning lime.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.