Non-ablative erbium YAG laser for the treatment of type III stress urinary incontinence (intrinsic sphincter deficiency).

Title Non-ablative erbium YAG laser for the treatment of type III stress urinary incontinence (intrinsic sphincter deficiency).
Authors A. Gaspar; H. Brandi
Journal Lasers Med Sci
DOI 10.1007/s10103-017-2170-5
Abstract

The objective of this pilot study was to determine the safety and efficacy of a new non-ablative erbium YAG laser procedure for the treatment of type III stress urinary incontinence (intrinsic sphincter deficiency) in women. Twenty-two patients with a Valsalva leak point pressure less than 60 cm H2O were recruited and treated with a non-ablative erbium laser delivering low fluence pulses inside the whole length of the urethra through a specially designed cannula. Treatment consisted of two treatment sessions with a 3-week interval in-between. Therapeutic efficacy, as assessed by a questionnaire addressing quality of life during urinary incontinence and the 1-h pad test, was measured at 3 and 6 months after the procedure. Both methods of assessment showed similar levels of improvement in terms of incontinence severity and improvement in quality of life. All patients tolerated the therapy well and adverse effects were mild and transient. The results of this pilot study showed significant improvement of type III stress urinary incontinence. Despite the limitations of this study, being small patient number and short follow-up, this non-ablative intraurethral erbium YAG laser procedure seems to be a safe and efficacious alternative for patients with type III stress urinary incontinence. More controlled studies should be performed to confirm this data and to evaluate the long-term effects.

Citation A. Gaspar; H. Brandi.Non-ablative erbium YAG laser for the treatment of type III stress urinary incontinence (intrinsic sphincter deficiency).. Lasers Med Sci. 2017;32(3):685691. doi:10.1007/s10103-017-2170-5

Related Elements

Erbium

See more Erbium products. Erbium (atomic symbol: Er, atomic number: 68) is a Block F, Group 3, Period 6 element with an atomic radius of 167.259. Erbium Bohr ModelThe number of electrons in each of Erbium's shells is [2, 8, 18, 30, 8, 2] and its electron configuration is [Xe]4f12 6s2. The erbium atom has a radius of 176 pm and a Van der Waals radius of 235 pm. Erbium was discovered by Carl Mosander in 1843. Sources of Erbium include the mineral monazite and sand ores. Erbium is a member of the lanthanide or rare earth series of elements.Elemental Erbium Picture In its elemental form, erbium is soft and malleable. It is fairly stable in air and does not oxidize as rapidly as some of the other rare earth metals. Erbium's ions fluoresce in a bright pink color, making them highly useful for imaging and optical applications. It is named after the Swedish town Ytterby where it was first discovered.

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Related Forms & Applications