Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite.

Title Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite.
Authors S. Chaiyo; E. Mehmeti; W. Siangproh; T.Long Hoang; H.Phong Nguyen; O. Chailapakul; K. Kalcher
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2017.11.015
Abstract

We introduce for the first time a paper-based analytical device (PAD) for the non-enzymatic detection of glucose by modifying a screen-printed carbon electrode with cobalt phthalocyanine, graphene and an ionic liquid (CoPc/G/IL/SPCE). The modifying composite was characterized by UV-visible spectroscopy, energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The disposable devices show excellent conductivity and fast electron transfer kinetics. The results demonstrated that the modified electrode on PADs had excellent electrocatalytic activity towards the oxidation of glucose with NaOH as supporting electrolyte (0.1M). The oxidation potential of glucose was negatively shifted to 0.64V vs. the screen-printed carbon pseudo-reference electrode. The paper-based sensor comprised a wide linear concentration range for glucose, from 0.01 to 1.3mM and 1.3-5.0mM for low and high concentration of glucose assay, respectively, with a detection limit of 0.67µM (S/N = 3). Additionally, the PADs were applied to quantify glucose in honey, white wine and human serum. The disposable, efficient, sensitive and low-cost non-enzymatic PAD has great potential for the development of point-of-care testing (POCT) devices that can be applied in healthcare monitoring.

Citation S. Chaiyo; E. Mehmeti; W. Siangproh; T.Long Hoang; H.Phong Nguyen; O. Chailapakul; K. Kalcher.Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite.. Biosens Bioelectron. 2018;102:113120. doi:10.1016/j.bios.2017.11.015

Related Elements

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Related Forms & Applications