Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure.

Title Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure.
Authors F. Pasquali; C. Agrimonti; L. Pagano; A. Zappettini; M. Villani; M. Marmiroli; J.C. White; N. Marmiroli
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2016.11.053
Abstract

Cell sensitivity to quantum dots (QDs) has been attributed to a cascade triggered by oxidative stress leading to apoptosis. The role and function of mitochondria in animal cells are well understood but little information is available on the complex genetic networks that regulate nucleo-mitochondrial interaction. The effect of CdS QD exposure in yeast Saccharomyces cerevisiae was assessed under conditions of limited lethality (<10%), using cell physiological and morphological endpoints. Whole-genomic array analysis and the screening of a deletion mutant library were also carried out. The results showed that QDs: increased the level of reactive oxygen species (ROS) and decreased the level of reduced vs oxidized glutathione (GSH/GSSG); reduced oxygen consumption and the abundance of respiratory cytochromes; disrupted mitochondrial membrane potentials and affected mitochondrial morphology. Exposure affected the capacity of cells to grow on galactose, which requires nucleo-mitochondrial involvement. However, QDs exposure did not materially induce respiratory deficient (RD) mutants but only RD phenocopies. All of these cellular changes were correlated with several key nuclear genes, including TOM5 and FKS1, involved in the maintenance of mitochondrial organization and function. The consequences of these cellular effects are discussed in terms of dysregulation of cell function in response to these "pathological mitochondria".

Citation F. Pasquali; C. Agrimonti; L. Pagano; A. Zappettini; M. Villani; M. Marmiroli; J.C. White; N. Marmiroli.Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure.. J Hazard Mater. 2017;324(Pt B):744752. doi:10.1016/j.jhazmat.2016.11.053

Related Elements

Cadmium

See more Cadmium products. Cadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr]4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm. Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications