On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.

Title On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.
Authors S. Yan; Q.H. Qin; Z. Zhong
Journal Nanotechnology
DOI 10.1088/1361-6528/ab99ef
Abstract

High entropy alloys (HEAs) holding several principal elements in high concentration represent unprecedented combination properties. Designing strong and well ductile HEAs has been attracting extensive attentions from researchers in the last decade, such as mechanisms in inducing different types of phases and nano-sized precipitates. Since some HEAs have low stacking fault energy, nano-twins prefer to form in plastic deformation process or magnetron sputtering, resulting in enhanced mechanical properties by the existence of twin boundaries, which implies that the addition of twin boundary in HEAs is a promising method in engineering HEAs. Understanding how twin boundaries affect the mechanical properties of nano twinned HEAs is a key for designing strong and ductile nano twinned HEAs. In this study, we have performed large-scale molecular dynamic simulation to investigate the mechanical properties of HEAs with different twin boundary spacings at various temperatures. Results show that the strength of HEAs at all tested temperatures increases with decreasing twin boundary spacing until below a critical value, which is 1.83 nm close to the experimental value (2 nm). The strength of HEAs at all tested temperatures decreases while further decreasing twin boundary spacing. There is a transition of dislocation motion at critical twin boundary spacing. In sample with twin boundary spacing bigger than 1.83 nm, Shockley dislocations tend to intersect twin boundaries and glide in hardening modes; while Shockley dislocations travel along the direction parallel to twin boundaries in samples with a twin boundary spacing smaller than 1.83 nm, leading to detwinning and softening in HEAs. The dislocation motion and entanglement at 1 K are respectively slower and stronger than those at 300 K; the grain boundary activity is more obvious at higher temperature. A mechanistic theoretical model together with Hall-Petch relationship is then proposed to consider the coupled twin-boundary and temperature effect on the deformation of nano twinned HEAs.

Citation S. Yan; Q.H. Qin; Z. Zhong.On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.. Nanotechnology. 2020. doi:10.1088/1361-6528/ab99ef

Related Elements

Chromium

See more Chromium products. Chromium (atomic symbol: Cr, atomic number: 24) is a Block D, Group 6, Period 4 element with an atomic weight of 51.9961. Chromium Bohr ModelThe number of electrons in each of Chromium's shells is 2, 8, 13, 1 and its electron configuration is [Ar] 3d5 4s1. Louis Nicolas Vauquelin first discovered chromium in 1797 and first isolated it the following year. The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous steel-gray appearance. Elemental ChromiumChromium is the hardest metallic element in the periodic table and the only element that exhibits antiferromagnetic ordering at room temperature, above which it transforms into a paramagnetic solid. The most common source of chromium is chromite ore (FeCr2O4). Due to its various colorful compounds, Chromium was named after the Greek word 'chroma.' meaning color.

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Related Forms & Applications