Oxygen vacancy migration/diffusion induced synaptic plasticity in a single titanate nanobelt.

Title Oxygen vacancy migration/diffusion induced synaptic plasticity in a single titanate nanobelt.
Authors M. Xiao; D. Shen; K.P. Musselman; W.W. Duley; N. Zhou
Journal Nanoscale
DOI 10.1039/C7NR09335G
Abstract

Neuromorphic computational systems that emulate biological synapses in the human brain are fundamental in the development of artificial intelligence protocols beyond the standard von Neumann architecture. Such systems require new types of building blocks, such as memristors that access a quasi-continuous and wide range of conductive states, which is still an obstacle for the realization of high-efficiency and large-capacity learning in neuromorphoric simulation. Here, we introduce hydrogen and sodium titanate nanobelts, the intermediate products of hydrothermal synthesis of TiO2 nanobelts, to emulate the synaptic behavior. Devices incorporating a single titanate nanobelt demonstrate robust and reliable synaptic functions, including excitatory postsynaptic current, paired pulse facilitation, short term plasticity, potentiation and depression, as well as learning-forgetting behavior. In particular, the gradual modulation of conductive states in the single nanobelt device can be achieved by a large number of identical pulses. The mechanism for synaptic functionality of the titanate nanobelt device is attributed to the competition between an electric field driven migration of oxygen vacancies and a thermally induced spontaneous diffusion. These results provide insight into the potential use of titanate nanobelts in synaptic applications requiring continuously addressable states coupled with high processing efficiency.

Citation M. Xiao; D. Shen; K.P. Musselman; W.W. Duley; N. Zhou.Oxygen vacancy migration/diffusion induced synaptic plasticity in a single titanate nanobelt.. Nanoscale. 2018;10(13):60696079. doi:10.1039/C7NR09335G

Related Elements

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Related Forms & Applications