Partial in Situ Reduction of Copper(II) Resulting in One-Pot Formation of 2D Neutral and 3D Cationic Copper(I) Iodide-Pyrazine Coordination Polymers: Structure and Emissive Properties.

Title Partial in Situ Reduction of Copper(II) Resulting in One-Pot Formation of 2D Neutral and 3D Cationic Copper(I) Iodide-Pyrazine Coordination Polymers: Structure and Emissive Properties.
Authors I.L. Malaestean; V.Ch Kravtsov; J. Lipkowski; E. Cariati; S. Righetto; D. Marinotto; A. Forni; M.S. Fonari
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.7b00290
Abstract

On the way to copper(I) iodide coordination polymers with specific luminescent properties, the in situ reduction of Cu(II) in the presence of KI and bidentate N-heteroatomic ligand, either pyrazine (pyz) or 4,4'-bipyridine (bpy), resulted in one two-dimensional and two three-dimensional new coordination networks. Starting from Cu(NO3)2·3H2O in the presence of pyz, successive precipitation of known yellow [(Cu(I)I)2(pyz)]n, new orange [Cu(I)I(pyz)]n, and new dark blue {[Cu(I)(pyz)2]·I5}n polymeric solids was observed. Starting from the same salt in the presence of bpy resulted in the successive precipitation of known yellow [(Cu(I)I)2(bpy)]n and new brown {[Cu(II)(NO3)(bpy)2]·I3·(dmf·H2O)}n coordination polymers. By using either Cu(CH3COO)2·H2O or Cu(BF4)2 as starting materials, both known forms, yellow [(Cu(I)I)2(bpy)]n and orange [Cu(I)I(bpy)]n, precipitated successively. The new solids were characterized by IR spectroscopy and X-ray analysis. [Cu(I)I(pyz)]n represents the missing member in the row of two-dimensional coordination networks with general formula [Cu(I)X(pyz)]n (X = Cl, Br, I). Its steady state and time-resolved characterization together with DFT and TDDFT calculations revealed that the emission at room temperature is mainly delayed fluorescence originating from mixed singlet metal-to-ligand charge transfer and halide-to-ligand charge transfer states, while that at 77 K is phosphorescence, associated with the small singlet-triplet energy differences (?E = 70 meV).

Citation I.L. Malaestean; V.Ch Kravtsov; J. Lipkowski; E. Cariati; S. Righetto; D. Marinotto; A. Forni; M.S. Fonari.Partial in Situ Reduction of Copper(II) Resulting in One-Pot Formation of 2D Neutral and 3D Cationic Copper(I) Iodide-Pyrazine Coordination Polymers: Structure and Emissive Properties.. Inorg Chem. 2017;56(9):51415151. doi:10.1021/acs.inorgchem.7b00290

Related Elements

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Iodine

See more Iodine products. Iodine (atomic symbol: I, atomic number: 53) is a Block P, Group 17, Period 5 element with an atomic radius of 126.90447. The number of electrons in each of Iodine's shells is 2, 8, 18, 18, 7 and its electron configuration is [Kr] 4d10 5s2 5p5. The iodine atom has a radius of 140 pm and a Van der Waals radius of 198 pm. In its elemental form, iodine has a lustrous metallic gray appearance as a solid and a violet appearance as a gas or liquid solution. Elemental IodineIodine forms compounds with many elements, but is less active than the other halogens. It dissolves readily in chloroform, carbon tetrachloride, or carbon disulfide. Iodine compounds are important in organic chemistry and very useful in the field of medicine. Iodine was discovered and first isolated by Bernard Courtois in 1811. The name Iodine is derived from the Greek word "iodes" meaning violet.

Related Forms & Applications