Patterned growth of Au nanoparticles on polycrystalline lead zirconate titanate surfaces.

Title Patterned growth of Au nanoparticles on polycrystalline lead zirconate titanate surfaces.
Authors J.Hun Kim; S. Kwon; W. Yang
Journal J Nanosci Nanotechnol
DOI
Abstract

We report the patterned growth of Au nanoparticles (NPs) on polarity-patterned polycrystalline lead zirconate titanate (PZT) as a template through photochemical reaction. The photochemical deposition of the Au NPs includes ultraviolet (UV) light illumination of the patterned PZT while immersed in a HAuCl4 solution. In particular, the influence of the UV wavelength, and the influence of the solution with the stabilizer and reducer on the growth selectivity of the Au NPs on the polarity-patterned regions was investigated. For a UV light of 365 nm wavelength, corresponding to a band-gap excitation of the PZT, more Au NPs were deposited on the + z polar region than on the other non-polar regions. However, no deposition of the Au NPs was observed for UV light wave-lengths longer than - 365 nm. When ascorbic acid (AA) as a reducer and cetyl-trimethylammonium bromide (CTAB) as a stabilizer were added to the HAuCl4 solution, the Au NPs on the + z polar region were observed to be deposited with a UV light of 435 nm, which is larger than the optical band gap wavelength of the PZT. Also, the growth selectivity and size uniformity on the + z region was significantly improved. These results could be due to the defect-induced photo-excitation of electrons and enhanced reduction process of Au+ ions by adding the reducer and the stabilizer in the photo-chemical process. This study suggests the possibility of the patterned growth of Au NPs on a ferroelectric surface through polarity patterning and photochemical reaction by optimizing the UV wavelength and employing reduction potential agents in a metal salt solution.

Citation J.Hun Kim; S. Kwon; W. Yang.Patterned growth of Au nanoparticles on polycrystalline lead zirconate titanate surfaces.. J Nanosci Nanotechnol. 2014;14(10):79859. doi:

Related Elements

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Lead

Lead Bohr ModelSee more Lead products. Lead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental LeadLead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrial materials.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Related Forms & Applications