Poly-L-Arginine-Modified Boron-Doped Diamond and Glassy Carbon Electrodes for Terbutaline Sulfate Detection.

Title Poly-L-Arginine-Modified Boron-Doped Diamond and Glassy Carbon Electrodes for Terbutaline Sulfate Detection.
Authors P.Vinicius F. da Costa; R.Maria P. da Silva; H.B. Suffredini; W.A. Alves
Journal J Nanosci Nanotechnol
DOI 10.1166/jnn.2018.15309
Abstract

This work describes the electro polymerization of a poly-L-arginine film onto boron-doped diamond (BDD) electrode and glassy carbon electrode (GCE) surfaces. The morphological and electrochemical properties of the modified electrodes were studied by atomic force microscopy and electrochemical methods, and their potential for terbutaline sulfate (TBS) detection was determined by voltammetry and chronoamperometry techniques. Our results demonstrate that the electrochemical surface area of both uncoated-bare electrodes (GCE e BDD) did not have significant differences in performance. However, higher current observed for TBS at poly-arginine/GCE is probably due to the higher surface coverage poly-arginine at GCE than BDD. It was concluded that for the systems under study, the poly-L-arginine/GCE was more suitable for TBS detection than that by the poly-L-arginine/BDD electrode, due to the more continuous and thicker poly-L-arginine film formed on the GCE, as revealed by the microscopy images. The TBS sensitivity and detection limit of the poly-L-arginine/GCE were determined to be 0.9 ±0.1 ?A ?mol-1L cm-2 and 0.10 ?mol L-1, respectively, by chronoamperometry. Furthermore, the abilities of the electrodes to detect other ?-agonists, namely clenbuterol and salbutamol, were studied by performing electrochemical experiments in the presence of these analytes. The results suggest that this film is a promising material for TBS detection due to high-surface-area electrochemical electrodes, and for the electrostatically-controlled thin film interference filter.

Citation P.Vinicius F. da Costa; R.Maria P. da Silva; H.B. Suffredini; W.A. Alves.Poly-L-Arginine-Modified Boron-Doped Diamond and Glassy Carbon Electrodes for Terbutaline Sulfate Detection.. J Nanosci Nanotechnol. 2018;18(7):45514558. doi:10.1166/jnn.2018.15309

Related Elements

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.