Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy.

Title Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy.
Authors Y. Jiang; G. Zhu; G. Dong; F. Lin; H. Zhang; J. Yuan; Z. Zhang; C. Jin
Journal Micron
DOI 10.1016/j.micron.2017.03.003
Abstract

A microscopic study of dissolution process of nanocrystals, an opposite while functioning cooperatively with growth in many cases, is an essential issue in variety aspects of research on nanocrystals. In this work, an in situ study of the dynamic dissolution process of palladium nanocrystals by liquid cell transmission electron microscope (TEM) is presented. The effective critical size (Rcritical) for monodispersed nanocrystals is determined to be about 5nm in the experimental condition of this article. When the size of nanocrystal is above Rcritical, the dissolution rate (dr/dt) is nearly a constant. For the nanocrystal sizing below Rcritical, the dissolution rate (dr/dt) increases with the decrease of the nanocrystal radius r, indicating that high equilibrium solubility must be taken into account in the dissolution rate of small nanocrystals in solution. It is found that the aggregation kinetics and confinement effect between adjacent nanocrystals have effects on the dissolution rate during the reaction, and it has been analyzed in details and discussed in terms of the underlying physics involved. Lastly, the effects of electron beam-water interaction and the iron (III) agents on the oxidative etching are also compared.

Citation Y. Jiang; G. Zhu; G. Dong; F. Lin; H. Zhang; J. Yuan; Z. Zhang; C. Jin.Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy.. Micron. 2017;97:2228. doi:10.1016/j.micron.2017.03.003

Related Elements

Palladium

Palladium Bohr ModelSee more Palladium products. Palladium (atomic symbol: Pd, atomic number: 46) is a Block D, Group 10, Period 5 element with an atomic weight of 106.42. The number of electrons in each of palladium's shells is 2, 8, 18, 18 and its electron configuration is [Kr] 4d10. The palladium atom has a radius of 137 pm and a Van der Waals radius of 202 pm. In its elemental form, palladium has a silvery white appearance. Palladium is a member of the platinum group of metals (along with platinum, rhodium, ruthenium, iridium and osmium). Elemental PalladiumPalladium has the lowest melting point and is the least dense of the group. Palladium can be found as a free metal and alloyed with other platinum-group metals. Nickel-copper deposits are the main commercial source of palladium. Palladium was discovered and first isolated by William Hyde Wollaston in 1803. Its name is derived from the asteroid Pallas.

Related Forms & Applications