Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.

Title Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.
Authors H.Y. Lee; T.H. Shen; C.Y. Hu; Y.Y. Tsai; C.Y. Wen
Journal Nano Lett
DOI 10.1021/acs.nanolett.7b03420
Abstract

Compositional abruptness of the interfaces is one of the important factors to determine the performance of Group IV semiconductor heterojunction (Si/Ge or Si/SiGe) nanowire devices. However, forming abrupt interfaces in the nanowires using the common vapor-liquid-solid (VLS) method is restricted because large solubility of Si and Ge in the Au eutectic liquid catalyst makes gradual composition change at the heterojunction after switching the gas phase components. According to the VLS growth mechanism, another possible approach to form an abrupt interface is making a change of the semiconductor concentration in the eutectic liquid before precipitation of the second phase. Here we show that the composition in AuSiGe eutectic liquid on SiGe nanowires of low Ge concentration (?6%) can be altered by thermal oxidation at 700 °C. During the oxidation process, only Si is oxidized on the surface of the eutectic liquid, and the Ge/Si ratio in the eutectic liquid is increased. The subsequently precipitated SiGe step at the liquid/solid interface has a higher Ge concentration (?20%), and a compositionally abrupt interface is produced in the nanowires. The growth mechanism of the heterojunction includes diffusion of Si and Ge atoms on nanowire surface into the AuSiGe eutectic liquid and step nucleation at the liquid/nanowire interface.

Citation H.Y. Lee; T.H. Shen; C.Y. Hu; Y.Y. Tsai; C.Y. Wen.Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.. Nano Lett. 2017;17(12):74947499. doi:10.1021/acs.nanolett.7b03420

Related Elements

Germanium

See more Germanium products. Germanium (atomic symbol: Ge, atomic number: 32) is a Block P, Group 14, Period 4 element with an atomic weight of 72.63. Germanium Bohr ModelThe number of electrons in each of germanium's shells is 2, 8, 18, 4 and its electron configuration is [Ar] 3d10 4s2 4p2. The germanium atom has a radius of 122.5 pm and a Van der Waals radius of 211 pm. Germanium was first discovered by Clemens Winkler in 1886. In its elemental form, germanium is a brittle grayish white semi-metallic element. Germanium is too reactive to be found naturally on Earth in its native state. High Purity (99.999%) Germanium (Ge) MetalIt is commercially obtained from zinc ores and certain coals. It is also found in argyrodite and germanite. It is used extensively as a semiconductor in transitors, solar cells, and optical materials. Other applications include acting an alloying agent, as a phosphor in fluorescent lamps, and as a catalyst. The name Germanium originates from the Latin word "Germania" meaning "Germany."

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications