Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents.

Title Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents.
Authors L.ChoCheung Lee; K.K. Leung; K.KamWing Lo
Journal Dalton Trans
DOI 10.1039/c7dt03465b
Abstract

There has been fast-growing interest in the exploitation of the photophysical and photochemical properties of luminescent transition metal complexes in biological applications, with a focus on both diagnostic and therapeutic aspects. In particular, the design of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents and anticancer drugs has received considerable attention for a number of reasons. First, most rhenium(i) tricarbonyl polypyridine complexes possess diverse photophysical and photochemical properties through the coordination of functionalized ligands. The typical photophysical properties of the complexes such as large Stokes shifts, long emission lifetimes, and high photostability allow them to serve as attractive candidates for optical imaging. Also, the cellular uptake of the complexes can be readily quantified by atomic absorption spectroscopy and inductively coupled plasma-mass spectrometry. Additionally, owing to the characteristic infrared absorption bands and the isostructural relationship between rhenium and technetium-99m, rhenium(i) tricarbonyl complexes have been exploited as multimodal imaging reagents for vibrational and radio-imaging, respectively. Furthermore, the facile photosensitizing properties and the three carbon monoxide (CO) ligands render rhenium(i) tricarbonyl complexes promising candidates as photodynamic therapy reagents and photoactivatable CO-releasing molecules, respectively, for cancer treatment. In this Perspective, we describe the recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents.

Citation L.ChoCheung Lee; K.K. Leung; K.KamWing Lo.Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents.. Dalton Trans. 2017;46(47):1635716380. doi:10.1039/c7dt03465b

Related Elements

Rhenium

See more Rhenium products. Rhenium (atomic symbol: Re, atomic number: 75) is a Block D, Group 7, Period 6 element with an atomic weight of 186.207. The number of electrons in each of rhenium's shells is 2, 8, 18, 32, 13, 2 and its electron configuration is [Xe] 4f14 5d5 6s2. Rhenium Bohr ModelThe rhenium atom has a radius of 137 pm and a Van der Waals radius of 217 pm. Rhenium was discovered and first isolated by Masataka Ogawa in 1908. In its elemental form, rhenium has a silvery-white appearance. Rhenium is the fourth densest element exceeded only by platinum, iridium, and osmium. Rhenium's high melting point is exceeded only by those of tungsten and carbon.Elemental Rhenium Rhenium is found in small amounts in gadolinite and molybdenite. It is usually extracted from the flue dusts of molybdenum smelters. The name Rhenium originates from the Latin word 'Rhenus' meaning "Rhine" after the place of discovery.

Related Forms & Applications