Regulation of bone mineral density in the grey squirrel, Sciurus carolinensis: Bioavailability of calcium oxalate, and implications for bark stripping.

Title Regulation of bone mineral density in the grey squirrel, Sciurus carolinensis: Bioavailability of calcium oxalate, and implications for bark stripping.
Authors C.P. Nichols; N.G. Gregory; N. Goode; R.M.A. Gill; J.A. Drewe
Journal J Anim Physiol Anim Nutr (Berl)
DOI 10.1111/jpn.12740
Abstract

The damage caused when grey squirrels strip the outer bark off trees and ingest the underlying phloem can result in reduced timber quality or tree death. This is extremely costly to the UK forestry industry and can alter woodland composition, hampering conservation efforts. The calcium hypothesis proposes that grey squirrels ingest phloem to ameliorate a seasonal calcium deficiency. Calcium in the phloem predominantly takes the form of calcium oxalate (CaOx), however not all mammals can utilise CaOx as a source of calcium. Here, we present the results of a small-scale study to determine the extent to which grey squirrels can utilise CaOx. One of three custom-made diets containing calcium in varying forms and quantities (CaOx diet, Low-calcium carbonate (CaCO3 ) diet and Control diet) were fed to three treatment groups of six squirrels for 8 weeks. Bone densitometric properties were measured at the end of this time using peripheral quantitative computed tomography and micro-computed tomography. Pyridinoline-a serum marker of bone resorption-was measured regularly throughout the study. Bone mineral density and cortical mineralisation were lower in squirrels fed the CaOx diet compared to the Control group but similar to that of those on the Low-calcium diet, suggesting that calcium from calcium oxalate was not effectively utilised to maintain bone mineralisation. Whilst no differences were observed in serum pyridinoline levels between individuals on different diets, females had on average higher levels than males throughout the study. Future work should seek to determine if this apparent lack of ability to utilise CaOx is common to a large sample of grey squirrels and if so, whether it is consistent across all areas and seasons.

Citation C.P. Nichols; N.G. Gregory; N. Goode; R.M.A. Gill; J.A. Drewe.Regulation of bone mineral density in the grey squirrel, Sciurus carolinensis: Bioavailability of calcium oxalate, and implications for bark stripping.. J Anim Physiol Anim Nutr (Berl). 2018;102(1):330336. doi:10.1111/jpn.12740

Related Elements

Calcium

See more Calcium products. Calcium (atomic symbol: Ca, atomic number: 20) is a Block S, Group 2, Period 4 element with an atomic weight of 40.078. The number of electrons in each of Calcium's shells is [2, 8, 8, 2] and its electron configuration is [Ar]4s2. Calcium Bohr ModelThe calcium atom has a radius of 197 pm and a Van der Waals radius of 231 pm. Calcium was discovered and first isolated by Sir Humphrey Davy in 1808. It is the fifth most abundant element in the earth's crust and can be found in minerals such as dolomite, gypsum, plagioclases, amphiboles, pyroxenes and garnets. In its elemental form, calcium has a dull gray-silver appearance. Calcium is a reactive, soft metal that is a member of the alkaline earth elements. Elemental CalciumIt frequently serves as an alloying agent for other metals like aluminum and beryllium, and industrial materials like cement and mortar are composed of calcium compounds like calcium carbonate. It is also an biologically essential substance found in teeth, bones, and shells. The name "calcium" originates from the Latin word "calics," meaning lime.

Related Forms & Applications