Removal of selenate from brine using anaerobic bacteria and zero valent iron.

Title Removal of selenate from brine using anaerobic bacteria and zero valent iron.
Authors J. Liu; J.C. Taylor; S.A. Baldwin
Journal J Environ Manage
DOI 10.1016/j.jenvman.2018.05.095
Abstract

The mining industry needs to treat large volumes of wastewater highly concentrated in chemical compounds that can adversely affect receiving environments. One promising method of treatment is the use of reverse osmosis to remove most of the dissolved salts. However, the resulting brine reject is a highly saline wastewater that needs further treatment to remove the toxic components, such as selenate, which is a chemical compound of great concern in coal-mining regions. Biological reduction and removal of dissolved selenium from a brine solution was achieved. Microorganisms were enriched from environmental samples collected from two mines, respectively, at different geographic locations through adaptive evolution in the laboratory. Batch treatment of typical brine was tested with two different enrichments with the addition of either of two chemical forms of iron, ferrous chloride or zero valent iron. Successful selenium removal in the presence of high nitrate and sulphate concentrations was achieved with a combination of enriched microorganisms from one particular site and the addition of zero-valent iron. The composition and metabolic potential of the enriched microorganisms revealed Clostridium, Sphaerochaeta, Synergistes and Desulfosporosinus species with the metabolic potential for selenate reduction through the YgfK enzymatic process associated with selenium detoxification.

Citation J. Liu; J.C. Taylor; S.A. Baldwin.Removal of selenate from brine using anaerobic bacteria and zero valent iron.. J Environ Manage. 2018;222:348358. doi:10.1016/j.jenvman.2018.05.095

Related Elements

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Related Forms & Applications