Bioinspired Orientation of β-Substituents on Porphyrin Antenna Ligands Switches Ytterbium(III) NIR Emission with Thermosensitivity.

Title Bioinspired Orientation of β-Substituents on Porphyrin Antenna Ligands Switches Ytterbium(III) NIR Emission with Thermosensitivity.
Authors Ning, Y.; Ke, X.S.; Hu, J.Y.; Liu, Y.W.; Ma, F.; Sun, H.L.; Zhang, J.L.
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.6b02481
Abstract

"Configurational isomerism" is an important approach found in naturally occurring chlorophylls to modulate light harvesting function without significant structural changes; however, this feature has been seldom applied in design of antenna ligands for lanthanide (Ln) sensitization. In this work, we introduced a bioinspired approach by orientation of β-dilactone moieties on porphyrinates, namely cis-/trans-porphodilactones, to modulate the energy transfer process from the lowest triplet excited state of the ligand (T1) to the emitting level of ytterbium(III) ((2)F5/2, Yb*). Interestingly, near-infrared (NIR) emission of Yb(III) could be switched "on" by the cis-porphodilactone ligand, while the trans-isomer renders Yb(III) emission "off" and the ratio of quantum yields is ∼8. Analysis of the structure-photophysical properties relationship suggests that the significant emission difference is correlated to the energy gaps between T1 and Yb* (1152 cm(-1) in the cis- vs -25 cm(-1) in the trans-isomer). More interestingly, due to back energy transfer (BEnT), the Yb(III) complex of cis-porphodilactone exhibits NIR emission with high thermosensitivity (4.0%°C(-1) in solution and 4.9%°C(-1) in solid state), comparable to previously reported terbium (Tb) and europium (Eu) visible emitters, in contrast to the trivial emission changes of the trans-isomer and porphyrin and porpholactone analogues. This work opens up new access to design NIR emissive Ln complexes by bioinspired modification of antenna ligands.

Citation Ning, Y.; Ke, X.S.; Hu, J.Y.; Liu, Y.W.; Ma, F.; Sun, H.L.; Zhang, J.L..Bioinspired Orientation of β-Substituents on Porphyrin Antenna Ligands Switches Ytterbium(III) NIR Emission with Thermosensitivity..

Related Elements

Ytterbium

See more Ytterbium products. Ytterbium (atomic symbol: Yb, atomic number: 70) is a Block F, Group 3, Period 6 element with an atomic weight of 173.054. Ytterbium Bohr ModelThe number of electrons in each of Ytterbium's shells is [2, 8, 18, 32, 8, 2] and its electron configuration is [Xe]4f14 6s2. The Ytterbium atom has a radius of 176 pm and a Van der Waals radius of 242 pm. Ytterbium was discovered by Jean Charles Galissard de Marignac in 1878 and first isolated by Georges Urbain in 1907.Elemental Ytterbium In its elemental form, ytterbium has a silvery-white color. Ytterbium is found in monazite sand as well as the ores euxenite and xenotime. Ytterbium is named after Ytterby, a village in Sweden. Ytterbium can be used as a source for gamma rays, for the doping of stainless steel, or other active metals. Its electrical resistivity rises under stress, making it very useful for stress gauges that measure the deformation of the ground in the even of an earthquake.