Samarium hexaboride is a trivial surface conductor.

Title Samarium hexaboride is a trivial surface conductor.
Authors P. Hlawenka; K. Siemensmeyer; E. Weschke; A. Varykhalov; J. Sánchez-Barriga; N.Y. Shitsevalova; A.V. Dukhnenko; V.B. Filipov; S. Gabáni; K. Flachbart; O. Rader; E.D.L. Rienks
Journal Nat Commun
DOI 10.1038/s41467-018-02908-7
Abstract

SmB is predicted to be the first member of the intersection of topological insulators and Kondo insulators, strongly correlated materials in which the Fermi level lies in the gap of a many-body resonance that forms by hybridization between localized and itinerant states. While robust, surface-only conductivity at low temperature and the observation of surface states at the expected high symmetry points appear to confirm this prediction, we find both surface states at the (100) surface to be topologically trivial. We find the state to appear Rashba split and explain the prominent state by a surface shift of the many-body resonance. We propose that the latter mechanism, which applies to several crystal terminations, can explain the unusual surface conductivity. While additional, as yet unobserved topological surface states cannot be excluded, our results show that a firm connection between the two material classes is still outstanding.

Citation P. Hlawenka; K. Siemensmeyer; E. Weschke; A. Varykhalov; J. Sánchez-Barriga; N.Y. Shitsevalova; A.V. Dukhnenko; V.B. Filipov; S. Gabáni; K. Flachbart; O. Rader; E.D.L. Rienks.Samarium hexaboride is a trivial surface conductor.. Nat Commun. 2018;9(1):517. doi:10.1038/s41467-018-02908-7

Related Elements

Samarium

See more Samarium products. Samarium (atomic symbol: Sm, atomic number: 62) is a Block F, Group 3, Period 6 element with an atomic radius of 150.36. Samarium Bohr ModelThe number of electrons in each of samarium's shells is 2, 8, 18, 24, 8, 2 and its electron configuration is [Xe]4f6 6s2. The samarium atom has a radius of 180 pm and a Van der Waals radius of 229 pm. In its elemental form, samarium has a silvery-white appearance. Elemental Samarium PictureSamarium is not found as free element in nature. It is found in the minerals cerite, gadolinite, samarskite, monazite and bastnäsite. Samarium is classified as a rare earth element and is the 40th most abundant element in the Earth's crust. Samarium was discovered and first isolated by Lecoq de Boisbaudran in 1879. It is named after the mineral samarskite, the mineral from which it was isolated.

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Related Forms & Applications