Simple fabrication of pineapple root-like palladium-gold catalysts as the high-efficiency cathode in direct peroxide-peroxide fuel cells.

Title Simple fabrication of pineapple root-like palladium-gold catalysts as the high-efficiency cathode in direct peroxide-peroxide fuel cells.
Authors X. Wang; K. Ye; C. Sun; H. Zhang; K. Zhu; K. Cheng; G. Wang; D. Cao
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.03.071
Abstract

Pd-Au/TiC electrodes with various three-dimensional structures are obtained by the pulsed potential electro-deposition in PdCl2/HAuCl4 electrolytes. The morphologies of Pd-Au/TiC composite catalysts are significantly dependent on the component of deposited solutions. The surface appearance of Pd-Au catalysts changes from rime-shaped structure, to feather-like construction, then to pineapple root-like structure and finally to flower-like configuration with the increase of PdCl2 content in electrolytes. These particular three-dimensional structures may be very suitable for H2O2 electro-reduction, which assures a high utilization of Pd-Au catalysts and provides a large specific surface area. The electro-catalytic activities of H2O2 reduction on the Pd-Au/TiC electrodes improve as increasing the Pd content in Pd-Au alloy catalysts. The pineapple root-like Pd5Au1/TiC electrode reveals remarkably excellent electrochemical property and desirable stability for catalyzing H2O2 reduction in acid media. The direct peroxide-peroxide fuel cells with a 10 cm(3) min(-1) flow rate display the open circuit voltage (OCV) of 0.85V and the peak power density of 56.5mWcm(-2) at 155mAcm(-2) with desirable cell stability, which is much higher than those previously reported.

Citation X. Wang; K. Ye; C. Sun; H. Zhang; K. Zhu; K. Cheng; G. Wang; D. Cao.Simple fabrication of pineapple root-like palladium-gold catalysts as the high-efficiency cathode in direct peroxide-peroxide fuel cells.. J Colloid Interface Sci. 2017;498:239247. doi:10.1016/j.jcis.2017.03.071

Related Elements

Palladium

Palladium Bohr ModelSee more Palladium products. Palladium (atomic symbol: Pd, atomic number: 46) is a Block D, Group 10, Period 5 element with an atomic weight of 106.42. The number of electrons in each of palladium's shells is 2, 8, 18, 18 and its electron configuration is [Kr] 4d10. The palladium atom has a radius of 137 pm and a Van der Waals radius of 202 pm. In its elemental form, palladium has a silvery white appearance. Palladium is a member of the platinum group of metals (along with platinum, rhodium, ruthenium, iridium and osmium). Elemental PalladiumPalladium has the lowest melting point and is the least dense of the group. Palladium can be found as a free metal and alloyed with other platinum-group metals. Nickel-copper deposits are the main commercial source of palladium. Palladium was discovered and first isolated by William Hyde Wollaston in 1803. Its name is derived from the asteroid Pallas.

Gold

See more Gold products. Gold (atomic symbol: Au, atomic number: 79) is a Block D, Group 11, Period 6 element with an atomic weight of 196.966569. The number of electrons in each of Gold's shells is 2, 8, 18, 32, 18, 1 and its electron configuration is [Xe]4f142 5d10 6s1. Gold Bohr ModelThe gold atom has a radius of 144 pm and a Van der Waals radius of 217 pm. Gold was first discovered by Early Man prior to 6000 B.C. In its elemental form, gold has a metallic yellow appearance. Gold is a soft metal and is usually alloyed to give it more strength.Elemental Gold It is a good conductor of heat and electricity, and is unaffected by air and most reagents. It is one of the least reactive chemical elements. Gold is often found as a free element and with silver as a gold-silver alloy. Less commonly, it is found in minerals as gold compounds, usually with tellurium.

Related Forms & Applications