Sodium dodecyl sulfate removal during electrospray ionization using cyclodextrins as simple sample solution additive for improved mass spectrometric detection of peptides.

Title Sodium dodecyl sulfate removal during electrospray ionization using cyclodextrins as simple sample solution additive for improved mass spectrometric detection of peptides.
Authors J.P. Quirino
Journal Anal Chim Acta
DOI 10.1016/j.aca.2017.12.012
Abstract

Sodium dodecyl sulfate (SDS) removal is a vital procedure in SDS-assisted bottom-up proteomics because SDS affects the quality of the data in electrospray ionization mass spectrometry (ESI-MS). SDS removal methods provide efficient removal of SDS and improved peptide analysis, but would usually require time, specialised devices, and experienced analysts. Here, by simple addition of ?-cyclodextrin (?-CD) to the solution at concentrations 1 to 2x the SDS in the sample, the SDS related signals in positive ionization ESI-MS can be significantly removed (70-99% reduction), without an additional sample manipulation step of extraction or purification. The mechanism for removal is based on the formation of tightly bound CD-SDS inclusion complexes, which hampered the generation of positively charged SDS multimers during ESI. For a sample with peptides (glu-val-phe, tyr-tyr-tyr, and bradykinin) and 3?mM SDS where 6?mM ?-CD was added, the %signal recoveries of peptides calculated by comparison with signals from standard samples without SDS were 49-59%. The space charge effect by SDS on bradykinin was also reduced, increasing the signal for bradykinin 12x in the presence of ?-CD. For a protein (bovine serum albumin, BSA) digest with 3?mM SDS, which is an expected concentration in trypsin treated samples, a noticeable 7-fold improvement in the peptide to SDS signal ratio and a 91% reduction of SDS signals were observed upon addition of 6?mM ?-CD. However, there were only small changes in the ESI-MS intensities for the BSA peptides (compared to without addition of ?-CD). This new approach to SDS signal removal using CDs in ESI-MS may find use in proteomic studies.

Citation J.P. Quirino.Sodium dodecyl sulfate removal during electrospray ionization using cyclodextrins as simple sample solution additive for improved mass spectrometric detection of peptides.. Anal Chim Acta. 2018;1005:5460. doi:10.1016/j.aca.2017.12.012

Related Elements

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications