Sulphur and nitrogen dual-doped mesoporous carbon hybrid coupling with graphite coated cobalt and cobalt sulfide nanoparticles: Rational synthesis and advanced multifunctional electrochemical properties.

Title Sulphur and nitrogen dual-doped mesoporous carbon hybrid coupling with graphite coated cobalt and cobalt sulfide nanoparticles: Rational synthesis and advanced multifunctional electrochemical properties.
Authors A. Zhu; P. Tan; L. Qiao; Y. Liu; Y. Ma; J. Pan
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.09.012
Abstract

Doping-type carbon matrixes not only play a vital role on their electrochemical properties, but also are capable of suppressing the crush and aggregation phenomenon in the electrode reaction process for pristine metallic compound. Herein, graphite coated cobalt and cobalt sulfide nanoparticles decorating on sulphur and nitrogen dual-doped mesoporous carbon (Co@Co9S8/S-N-C) was fabricated by a combined hydrothermal reaction with pyrolysis method. Benefited from g-C3N4 template and original synthetic route, as-obtained Co@Co9S8/S-N-C possessed high specific surface area (751.7m(2)g(-1)), large pore volume (1.304cm(3)g(-1)), S and N dual-doped component and relative integrated graphite skeleton, as results it was developed as decent oxygen reduction electro-catalyst and ultra-long-life Li-ion battery anode. Surprisingly, compared with commercial Pt/C, it displayed a higher half-wave potential (0.015V positive) and lower Tafel slop (66mVs(-1)), indicating its superior ORR activities. Moreover, the ultra-long-life cyclic performances were revealed for lithium ion battery, exhibiting the retention capacities of 652.1mAhg(-1) after 610 cycles at 0.2Ag(-1), 432.1 and 405.7mAhg(-1) at 5 and 10Ag(-1) after 1000 cycles, respectively. We propose that the synergistic effect of structure and chemical component superiorities should be responsible for the remarkable electrochemical behaviors of the Co@Co9S8/S-N-C.

Citation A. Zhu; P. Tan; L. Qiao; Y. Liu; Y. Ma; J. Pan.Sulphur and nitrogen dual-doped mesoporous carbon hybrid coupling with graphite coated cobalt and cobalt sulfide nanoparticles: Rational synthesis and advanced multifunctional electrochemical properties.. J Colloid Interface Sci. 2018;509:254264. doi:10.1016/j.jcis.2017.09.012

Related Elements

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Related Forms & Applications