Surface Functionalization with Copper Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin Films.

Title Surface Functionalization with Copper Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin Films.
Authors M.Samadi Khoshkhoo; S. Maiti; F. Schreiber; T. Chassé; M. Scheele
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b00555
Abstract

Macroscopic superlattices of tin-doped indium oxide (ITO) nanocrystals (NCs) are prepared by self-assembly at the air/liquid interface followed by simultaneous ligand exchange with the organic semiconductor copper 4,4',4?,4?-tetraaminophthalocyanine (Cu4APc). By using X-ray photoelectron spectroscopy (XPS), grazing-incidence small-angle X-ray scattering (GISAXS), and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, we demonstrate that the semiconductor molecules largely replace the native surfactant from the ITO NC surface and act as cross-linkers between neighboring particles. Transport measurements reveal an increase in electrical conductance by 9 orders of magnitude, suggesting that Cu4APc provides efficient electronic coupling for neighboring ITO NCs. This material provides the opportunity to study charge and spin transport through phthalocyanine monolayers.

Citation M.Samadi Khoshkhoo; S. Maiti; F. Schreiber; T. Chassé; M. Scheele.Surface Functionalization with Copper Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin Films.. ACS Appl Mater Interfaces. 2017;9(16):1419714206. doi:10.1021/acsami.7b00555

Related Elements

Indium

See more Indium products. Indium (atomic symbol: In, atomic number: 49) is a Block P, Group 13, Period 5 element with an atomic weight of 114.818. The number of electrons in each of indium's shells is [2, 8, 18, 18, 3] and its electron configuration is [Kr] 4d10 5s2 5p1. The indium atom has a radius of 162.6 pm and a Van der Waals radius of 193 pm. Indium was discovered by Ferdinand Reich and Hieronymous Theodor Richter in 1863. Indium Bohr ModelIt is a relatively rare, extremely soft metal is a lustrous silvery gray and is both malleable and easily fusible. It has similar chemical properties to Elemental Indiumgallium such as a low melting point and the ability to wet glass. Fields such as optics and microelectronics that utilize semiconductor technology have wide uses for indium, especially in the form of Indiun Tin Oxide (ITO). Thin films of Copper Indium Gallium Selenide (CIGS) are used in high-performing solar cells. Indium's name is derived from the Latin word indicum, meaning violet.

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Tin

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.