Synthesis and Electrochemical Reaction of Tin Oxalate - Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries.

Title Synthesis and Electrochemical Reaction of Tin Oxalate - Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries.
Authors J.S. Park; J.Hyeon Jo; H. Yashiro; S.S. Kim; S.J. Kim; Y.K. Sun; S.T. Myung
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b03325
Abstract

Unlike SnO2, few studies have reported on the use of SnC2O4 as an anode material for rechargeable lithium batteries. Here, we first introduce a SnC2O4-reduced graphene oxide composite produced via hydrothermal reactions followed by a layer-by-layer self-assembly process. The addition of rGO increased the electric conductivity up to ~10-3 S cm-1. As a result, the SnC2O4-reduced graphene oxide electrode exhibited a high charge (oxidation) capacity of ~1166 mAh g-1 at a current of 100 mA g-1 (0.1 C-rate) with a good retention delivering approximately 620 mAh g-1 at the 200th cycle. Even at a rate of 10 C (10 A g-1), the composite electrode was able to obtain a charge capacity of 467 mAh g-1. In contrast, the bare SnC2O4 had inferior electrochemical properties relative to the SnC2O4 - reduced graphene oxide composite: ~643 mAh g-1 at the first charge, retaining 192 mAh g-1 at the 200th cycle and 289 mAh g-1 at 10 C. This improvement in electrochemical properties is most likely due to the improvement in electric conductivity, which enables facile electron transfer via simultaneous conversion above 0.75 V and de-/alloy reactions below 0.75 V: SnC2O4 + 2Li+ + 2e- ? Sn + Li2C2O4 + xLi+ + xe- ? LixSn on discharge (reduction) and vice versa on charge. This was confirmed by systematic studies of ex-situ X-ray diffraction, transmission electron microscopy, and time-of-flight secondary-ion mass spectroscopy.

Citation J.S. Park; J.Hyeon Jo; H. Yashiro; S.S. Kim; S.J. Kim; Y.K. Sun; S.T. Myung.Synthesis and Electrochemical Reaction of Tin Oxalate - Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries.. ACS Appl Mater Interfaces. 2017. doi:10.1021/acsami.7b03325

Related Elements

Tin

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Related Forms & Applications