Synthesis of Large-Area Tungsten Disulfide Films on Pre-Reduced Tungsten Suboxide Substrates.

Title Synthesis of Large-Area Tungsten Disulfide Films on Pre-Reduced Tungsten Suboxide Substrates.
Authors S.Ho Choi; S. Boandoh; Y.Ho Lee; J.Song Lee; J.H. Park; S.Min Kim; W. Yang; K.Kang Kim
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b12151
Abstract

We report a facile method for the synthesis of large-area tungsten disulfide (WS2) films by means of chemical vapor deposition (CVD). To promote WS2 film growth, the precursor solution, which includes pre-reduced tungsten suboxides, is prepared by using hydrazine as the strong reducing agent and spin-coated onto the growth substrate. Growth is then carried out in a CVD chamber vaporized with dimethyl disulfide as the sulfur precursor. Although only WS2 flakes are grown with unreduced tungsten precursors under a hydrogen atmosphere, WS2 films are readily attained on pre-reduced tungsten suboxide substrates without the need for further reduction by hydrogen, which is noted to induce discontinuity of the grown film. The result presents the coverage of WS2 to be proportional to the amount of reduced tungsten suboxides, which is revealed by X-ray photoelectron spectroscopy. Furthermore, it is found that the multilayer WS2 flakes grow along the grain boundary, which allows the analysis of the grain size of WS2 films by optical microscopy images only. WS2 field effect transistors are fabricated by conventional photolithography and show an average electron mobility of 0.4 cm2 V-1 s-1 and a high on/off ratio of 106 at room temperature.

Citation S.Ho Choi; S. Boandoh; Y.Ho Lee; J.Song Lee; J.H. Park; S.Min Kim; W. Yang; K.Kang Kim.Synthesis of Large-Area Tungsten Disulfide Films on Pre-Reduced Tungsten Suboxide Substrates.. ACS Appl Mater Interfaces. 2017;9(49):4302143029. doi:10.1021/acsami.7b12151

Related Elements

Tungsten

See more Tungsten products. Tungsten (atomic symbol: W, atomic number: 74) is a Block D, Group 6, Period 6 element with an atomic weight of 183.84. The number of electrons in each of tungsten's shells is [2, 8, 18, 32, 12, 2] and its electron configuration is [Xe] 4f14 5d4 6s2. Tungsten Bohr ModelThe tungsten atom has a radius of 139 pm and a Van der Waals radius of 210 pm. Tungsten was discovered by Torbern Bergman in 1781 and first isolated by Juan José Elhuyar and Fausto Elhuyar in 1783. In its elemental form, tungsten has a grayish white, lustrous appearance. Elemental TungstenTungsten has the highest melting point of all the metallic elements and a density comparable to that or uranium or gold and about 1.7 times that of lead. Tungsten alloys are often used to make filaments and targets of x-ray tubes. It is found in the minerals scheelite (CaWO4) and wolframite [(Fe,Mn)WO4]. In reference to its density, Tungsten gets its name from the Swedish words tung and sten, meaning heavy stone.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications