Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium(II) complexes.

Title Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium(II) complexes.
Authors S. Seyfi; R. Alizadeh; D. Ganji; V. Amani
Journal Spectrochim Acta A Mol Biomol Spectrosc
DOI 10.1016/j.saa.2017.09.024
Abstract

Binuclear palladium(II) complexes with metal-metal (d8-d8) bonding interaction were synthesized by reactions of the 1-methyl-1H-1,2,3,4-tetrazole-5-thiol (Hmtzt) or a mixture of Hmtzt and 1,3-propanediamine (1,3-pda) ligands. Complex [Pd2(?-mtzt)4]·2CH3CN (1) was synthesized by the reaction of Pd(OAc)2 with Hmtzt dissolved in acetonitrile and complex [Pd2(?-mtzt)2(mtzt)2(1,3-pda)] (2) was synthesized by reaction of a mixture of Hmtzt and 1,3-propanediamine (dissolved in methanol) with PdCl2 (dissolved in acetonitrile) and were identified through elemental analysis, IR, UV-Vis, 1H NMR, luminescence spectroscopy as well as single-crystal X-ray diffraction method. A single-crystal of complex 1 shows that two Pd(II) centers are linked together by four bridging tetrazole ligands providing a paddle wheel-like arrangement. Also a crystal structure of complex 2 shows that this complex possesses a symmetric structure in which one Pd atom is tetra-coordinated by four sulfur atoms to forms PdS4 and other Pd atom is tetra-coordinated by four nitrogen to forms PdN4 coordination sphere. Density functional theory (DFT) was performed in this study for the Hmtzt ligand and binuclear palladium(II) complexes (1) and (2). The DFT calculation shows PdII-PdII bond lengths of 2.831 and 3.086Å in complex 1 and 2, respectively which are close to the observed bond lengths of 2.802(11) and 3.0911(17)Å from single-crystal X-ray structure. The optimized geometry of the complexes is shown good agreement by X-ray data. Structural properties and molecular descriptors including bond lengths, bond angles, chemical hardness, dipole moment, HOMO-LUMO energy levels, electron transfer were analyzed. The IR spectroscopy was performed using VEDA4 software and UV-Vis spectra were analyzed using time-dependent density functional theory (TD-DFT) method. The theoretical and experimental data were also compared with each other.

Citation S. Seyfi; R. Alizadeh; D. Ganji; V. Amani.Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium(II) complexes.. Spectrochim Acta A Mol Biomol Spectrosc. 2018;190:298311. doi:10.1016/j.saa.2017.09.024

Related Elements

Palladium

Palladium Bohr ModelSee more Palladium products. Palladium (atomic symbol: Pd, atomic number: 46) is a Block D, Group 10, Period 5 element with an atomic weight of 106.42. The number of electrons in each of palladium's shells is 2, 8, 18, 18 and its electron configuration is [Kr] 4d10. The palladium atom has a radius of 137 pm and a Van der Waals radius of 202 pm. In its elemental form, palladium has a silvery white appearance. Palladium is a member of the platinum group of metals (along with platinum, rhodium, ruthenium, iridium and osmium). Elemental PalladiumPalladium has the lowest melting point and is the least dense of the group. Palladium can be found as a free metal and alloyed with other platinum-group metals. Nickel-copper deposits are the main commercial source of palladium. Palladium was discovered and first isolated by William Hyde Wollaston in 1803. Its name is derived from the asteroid Pallas.

Related Forms & Applications