Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets.

Title Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets.
Authors S. Bose; S. Shendre; Z. Song; V.Kumar Sharma; D.Hua Zhang; C. Dang; W. Fan; H.Volkan Demir
Journal Nanoscale
DOI 10.1039/c7nr00163k
Abstract

Colloidal cadmium selenide (CdSe) nanoplatelets (NPLs) are a recently developed class of efficient luminescent nanomaterials suitable for optoelectronic device applications. A change in temperature greatly affects their electronic bandstructure and luminescence properties. It is important to understand how and why the characteristics of NPLs are influenced, particularly at elevated temperatures, where both reversible and irreversible quenching processes come into the picture. Here we present a study of the effect of elevated temperatures on the characteristics of colloidal CdSe NPLs. We used an effective-mass envelope function theory based 8-band k·p model and density-matrix theory considering exciton-phonon interaction. We observed the photoluminescence (PL) spectra at various temperatures for their photon emission energy, PL linewidth and intensity by considering the exciton-phonon interaction with both acoustic and optical phonons using Bose-Einstein statistical factors. With a rise in temperature we observed a fall in the transition energy (emission redshift), matrix element, Fermi factor and quasi Fermi separation, with a reduction in intraband state gaps and increased interband coupling. Also, there was a fall in the PL intensity, along with spectral broadening due to an intraband scattering effect. The predicted transition energy values and simulated PL spectra at varying temperatures exhibit appreciable consistency with the experimental results. Our findings have important implications for the application of NPLs in optoelectronic devices, such as NPL lasers and LEDs, operating much above room temperature.

Citation S. Bose; S. Shendre; Z. Song; V.Kumar Sharma; D.Hua Zhang; C. Dang; W. Fan; H.Volkan Demir.Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets.. Nanoscale. 2017;9(19):65956605. doi:10.1039/c7nr00163k

Related Elements

Cadmium

See more Cadmium products. Cadmium (atomic symbol: Cd, atomic number: 48) is a Block D, Group 12, Period 5 element with an atomic weight of 112.411. Cadmium Bohr ModelThe number of electrons in each of Cadmium's shells is 2, 8, 18, 18, 2 and its electron configuration is [Kr]4d10 5s2. The cadmium atom has a radius of 151 pm and a Van der Waals radius of 230 pm. Cadmium was discovered and first isolated by Karl Samuel Leberecht Hermann and Friedrich Stromeyer in 1817. In its elemental form, cadmium has a silvery bluish gray metallic appearance. Cadmium makes up about 0.1 ppm of the earth's crust. Elemental CadmiumNo significant deposits of cadmium containing ores are known, however, it is sometimes found in its metallic form. It is a common impurity in zinc ores and is isolated during the production of zinc. Cadmium is a key component in battery production and particular pigments and coatings due to its distinct yellow color. Cadmium oxide is used in phosphors for television picture tubes. The name Cadmium originates from the Latin word 'cadmia' and the Greek word 'kadmeia'.

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Related Forms & Applications