The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals.

Title The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals.
Authors B. Li; F.H. Isikgor; H. Coskun; J. Ouyang
Journal Angew Chem Int Ed Engl
DOI 10.1002/anie.201710234
Abstract

It is very important to study the crystallization of hybrid organic-inorganic perovskites because their thin films are usually prepared from solution. The investigation on the growth of perovskite films is however limited by their polycrystallinity. In this work, methylammonium lead triiodide single crystals grown from solutions with different methylammonium iodide (MAI):lead iodide (PbI2 ) ratios were investigated. We observed a V-shaped dependence of the crystallization onset temperature on the MAI:PbI2 ratio. This is attributed to the MAI effects on the supersaturation of precursors and the interfacial energy of the crystal growth. At low MAI:PbI2 ratio (<1.7), more MAI leads to the supersaturation of the precursors at lower temperature. At high MAI:PbI2 ratio, the crystal growing plans change from (100)-plane dominated to (001)-plane dominated. The latter have higher interfacial energy than the former, leading to a higher crystallization onset temperature.

Citation B. Li; F.H. Isikgor; H. Coskun; J. Ouyang.The Effect of Methylammonium Iodide on the Supersaturation and Interfacial Energy of the Crystallization of Methylammonium Lead Triiodide Single Crystals.. Angew Chem Int Ed Engl. 2017;56(50):1607316076. doi:10.1002/anie.201710234

Related Elements

Iodine

See more Iodine products. Iodine (atomic symbol: I, atomic number: 53) is a Block P, Group 17, Period 5 element with an atomic radius of 126.90447. The number of electrons in each of Iodine's shells is 2, 8, 18, 18, 7 and its electron configuration is [Kr] 4d10 5s2 5p5. The iodine atom has a radius of 140 pm and a Van der Waals radius of 198 pm. In its elemental form, iodine has a lustrous metallic gray appearance as a solid and a violet appearance as a gas or liquid solution. Elemental IodineIodine forms compounds with many elements, but is less active than the other halogens. It dissolves readily in chloroform, carbon tetrachloride, or carbon disulfide. Iodine compounds are important in organic chemistry and very useful in the field of medicine. Iodine was discovered and first isolated by Bernard Courtois in 1811. The name Iodine is derived from the Greek word "iodes" meaning violet.

Lead

Lead Bohr ModelSee more Lead products. Lead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental LeadLead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrial materials.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications