The organotellurium compound ammonium trichloro(dioxoethylene-o,o')tellurate reacts with homocysteine to form homocystine and decreases homocysteine levels in hyperhomocysteinemic mice.

Title The organotellurium compound ammonium trichloro(dioxoethylene-o,o')tellurate reacts with homocysteine to form homocystine and decreases homocysteine levels in hyperhomocysteinemic mice.
Authors E. Okun; Y. Dikshtein; A. Carmely; H. Saida; G. Frei; B.A. Sela; L. Varshavsky; A. Ofir; E. Levy; M. Albeck; B. Sredni
Journal FEBS J
DOI 10.1111/j.1742-4658.2007.05842.x
Abstract

Ammonium trichloro(dioxoethylene-o,o')tellurate (AS101) is an organotellurium compound with pleiotropic functions that has been associated with antitumoral, immunomodulatory and antineurodegenerative activities. Tellurium compounds with a +4 oxidation state, such as AS101, react uniquely with thiols, forming disulfide molecules. In light of this, we tested whether AS101 can react with the amino acid homocysteine both in vitro and in vivo. AS101 conferred protection against homocysteine-induced apoptosis of HL-60 cells. The protective mechanism of AS101 against homocysteine toxicity was directly mediated by its chemical reactivity, whereby AS101 reacted with homocysteine to form homocystine, the less toxic disulfide form of homocysteine. Moreover, AS101 was shown here to reduce the levels of total homocysteine in an in vivo model of hyperhomocysteinemia. As a result, AS101 also prevented sperm cells from undergoing homocysteine-induced DNA fragmentation. Taken together, our results suggest that the organotellurium compound AS101 may be of clinical value in reducing total circulatory homocysteine levels.

Citation E. Okun; Y. Dikshtein; A. Carmely; H. Saida; G. Frei; B.A. Sela; L. Varshavsky; A. Ofir; E. Levy; M. Albeck; B. Sredni.The organotellurium compound ammonium trichloro(dioxoethylene-o,o')tellurate reacts with homocysteine to form homocystine and decreases homocysteine levels in hyperhomocysteinemic mice.. FEBS J. 2007;274(12):315970. doi:10.1111/j.1742-4658.2007.05842.x

Related Elements

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications