The Ternary Alkaline-Earth Metal Manganese Bismuthides Sr2MnBi2 and Ba2Mn1-xBi2 (x ? 0.15).

Title The Ternary Alkaline-Earth Metal Manganese Bismuthides Sr2MnBi2 and Ba2Mn1-xBi2 (x ? 0.15).
Authors A. Ovchinnikov; B. Saparov; S.Q. Xia; S. Bobev
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.7b01851
Abstract

Two new ternary manganese bismuthides have been synthesized and their structures established based on single-crystal X-ray diffraction methods. Sr2MnBi2 crystallizes in the orthorhombic space group Pnma (a = 16.200(9) Å, b = 14.767(8) Å, c = 8.438(5) Å, V = 2018(2) Å(3); Z = 12; Pearson index oP60) and is isostructural to the antimonide Sr2MnSb2. The crystal structure contains corrugated layers of corner- and edge-shared [MnBi4] tetrahedra and Sr atoms enclosed between these layers. Electronic structure calculations suggest that Sr2MnBi2 is a magnetic semiconductor possessing Mn(2+) (high-spin d(5)) ions, and its structure can be rationalized within the Zintl concept as [Sr(2+)]2[Mn(2+)][Bi(3-)]2. The temperature dependence of the resistivity shows behavior consistent with a degenerate semiconductor/poor metal, and magnetic susceptibility measurements reveal a high degree of frustration resulting from the two-dimensional nature of the structure. The compositionally similar Ba2Mn1-xBi2 (x ? 0.15) crystallizes in a very different structure (space group Imma, a = 25.597(8) Å, b = 25.667(4) Å, c = 17.128(3) Å, V = 11253(4) Å(3); Z = 64; Pearson index oI316) with its own structure type. The complex structure boasts Mn atoms in a variety of coordination environments and can be viewed as consisting of two interpenetrating 3D frameworks, linked by Bi-Bi bonds. Ba2Mn1-xBi2 can be regarded as a highly reduced compound with anticipated metallic behavior.

Citation A. Ovchinnikov; B. Saparov; S.Q. Xia; S. Bobev.The Ternary Alkaline-Earth Metal Manganese Bismuthides Sr2MnBi2 and Ba2Mn1-xBi2 (x ? 0.15).. Inorg Chem. 2017. doi:10.1021/acs.inorgchem.7b01851

Related Elements

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Manganese

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

Related Forms & Applications