TiO2 Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium-Sulfur Batteries.

Title TiO2 Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium-Sulfur Batteries.
Authors T. Lei; Y. Xie; X. Wang; S. Miao; J. Xiong; C. Yan
Journal Small
DOI 10.1002/smll.201701013
Abstract

The rechargeable lithium-sulfur battery is recognized as a promising candidate for electrochemical energy storage system because of their exceptional advance in energy density. However, the fast capacity decay of sulfur cathode caused by polysulfide dissolution and low specific capacity caused by poor electrical conductivity still impede the further development of lithium-sulfur battery. To address above issues, this study reports the synthesis of feather duster-like TiO2 architecture by in situ growth of TiO2 nanowires on carbon cloth and further evaluates as sulfur host material. The strong chemical binding interaction between the polysulfides and TiO2 feather duster efficiently restrains the shuttle effect, leading to enhanced electrochemical kinetics. Besides, the in situ grown TiO2 NWs array also supply high surface for sulfur-loading and fast path for electron transfer and ion diffusion. As results, the novel CC/TiO2 /S composite cathode exhibits a high capacity of 608 mA h g(-1) at 1.0 C after 700 cycles corresponding to capacity decay as low as 0.045% per cycle with excellent Coulombic efficiency higher than 99.5%.

Citation T. Lei; Y. Xie; X. Wang; S. Miao; J. Xiong; C. Yan.TiO2 Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium-Sulfur Batteries.. Small. 2017. doi:10.1002/smll.201701013

Related Elements

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Related Forms & Applications