Transmission Electron Microscope Nanosculpting of Topological Insulator Bismuth Selenide.

Title Transmission Electron Microscope Nanosculpting of Topological Insulator Bismuth Selenide.
Authors S.E. Friedensen; W.M. Parkin; J.T. Mlack; M. Drndic
Journal ACS Nano
DOI 10.1021/acsnano.8b02377
Abstract

We present a process for sculpting BiSe nanoflakes into application-relevant geometries using a high-resolution transmission electron microscope. This process takes several minutes to sculpt small areas and can be used to cut the BiSe into wires and rings, to thin areas of the BiSe, and to drill circular holes and lines. We determined that this method allows for sub?10 nm features and results in clean edges along the drilled regions. Using in situ high-resolution imaging, selected area diffraction, and atomic force microscopy, we found that this lithography process preserves the crystal structure of BiSe. TEM sculpting is more precise and potentially results in cleaner edges than does ion-beam modification; therefore, the promise of this method for thermoelectric and topological devices calls for further study into the transport properties of such structures.

Citation S.E. Friedensen; W.M. Parkin; J.T. Mlack; M. Drndic.Transmission Electron Microscope Nanosculpting of Topological Insulator Bismuth Selenide.. ACS Nano. 2018;12(7):69496955. doi:10.1021/acsnano.8b02377

Related Elements

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Related Forms & Applications