Tridentate arsenate complexation with ferric hydroxide and its effect on the kinetics of arsenate adsorption and desorption.

Title Tridentate arsenate complexation with ferric hydroxide and its effect on the kinetics of arsenate adsorption and desorption.
Authors J. Farrell
Journal Chemosphere
DOI 10.1016/j.chemosphere.2017.06.099
Abstract

The adsorption reactions of arsenate with ferric hydroxide minerals and amorphous ferric hydroxide play an important role in affecting the transport and fate of arsenate in the environment. Previous studies have investigated formation of mono- and bidentate complexes between arsenate and ferric hydroxide. Based on AsFe coordination numbers, there is spectroscopic evidence that arsenate may also form tridentate complexes with ferric hydroxide. However, the nature of these complexes and the reaction energies and activation barriers for their formation have not been investigated. This research used density functional theory (DFT) calculations to determine the structure of possible tridentate complexes and to determine reaction energies and activation barriers for forming different structures. Tridentate binding between arsenate and ferric hydroxide was found to be thermodynamically favorable for arsenate binding to two or three adjacent dioctahedral ferric hydroxide clusters. In addition, arsenate was also observed to form AsOAs bonds simultaneously to forming bidentate binuclear bonds with ferric hydroxide. The AsFe distances in the tridentate complexes differed from those calculated for bidentate complexes by an average distance of only 0.045 Å. This suggests that spectroscopic methods (EXAFS) may not be able to distinguish bidentate from tridentate complexes based on interatomic distances. Formation of tridentate complexes required overcoming activation barriers ranging from 13 to 51 kcal/mol. Breaking of tridentate complexes had even greater activation barriers ranging from 18 to 62 kcal/mol. This suggests that tridentate complexation may contribute to previously observed extremely slow adsorption and desorption reactions of arsenate with ferric hydroxide.

Citation J. Farrell.Tridentate arsenate complexation with ferric hydroxide and its effect on the kinetics of arsenate adsorption and desorption.. Chemosphere. 2017;184:12091214. doi:10.1016/j.chemosphere.2017.06.099

Related Elements

Arsenic

See more Arsenic products. Arsenic (atomic symbol: As, atomic number: 33) is a Block P, Group 15, Period 4 element with an atomic radius of 74.92160. Arsenic Bohr ModelThe number of electrons in each of arsenic's shells is 2, 8, 18, 5 and its electron configuration is [Ar] 3d10 4s2 4p3. The arsenic atom has a radius of 119 pm and a Van der Waals radius of 185 pm. Arsenic was discovered in the early Bronze Age, circa 2500 BC. It was first isolated by Albertus Magnus in 1250 AD. In its elemental form, arsenic is a metallic grey, brittle, crystalline, semimetallic solid. Elemental ArsenicArsenic is found in numerous minerals including arsenolite (As2O3), arsenopyrite (FeAsS), loellingite (FeAs2), orpiment (As2S3), and realgar (As4S4). Arsenic has numerous applications as a semiconductor and other electronic applications as indium arsenide, silicon arsenide and tin arsenide. Arsenic is finding increasing uses as a doping agent in solid-state devices such as transistors.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Related Forms & Applications