Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors.

Title Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors.
Authors P. Li; D. Zhang; C. Jiang; X. Zong; Y. Cao
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2017.06.027
Abstract

The extraordinary properties of black phosphorus (BP) make it a promising candidate for next-generation transistor chemical sensors. However, BP films reported so far are supported on substrate, and substrate scattering drastically deteriorates its electrical properties. Consequentially, the potential sensing capability of intrinsic BP is highly underestimated and its sensing mechanism is masked. Additionally, the optimum sensing regime of BP remains unexplored. This article is the first demonstration of suspended BP sensor operated in subthreshold regime. BP exhibited significant enhancement of sensitivity for ultra-low-concentration mercury detection in the absence of substrate, and the sensitivity reached maximum in subthreshold regime. Without substrate scattering, the suspended BP device demonstrated 10 times lower 1/f noise which contributed to better signal-to-noise ratio. Therefore, rapid label-free trace detection of Hg(2+) was achieved with detection limit of 0.01 ppb, lower than the world health organization (WHO) tolerance level (1 ppb). The time constant for ion detection extracted was 3s. Additionally, experimental results revealed that good stability, repeatability, and selectivity were achieved. BP sensors also demonstrated the ability of detecting mercury ions in environment water samples. The underling sensing mechanism of intrinsic BP was ascribed to the carrier density variation resulted from surface charge gating effect, so suspended BP in subthreshold regime with optimum gating effect demonstrated the best sensitivity. Our results show the prominent advantages of intrinsic BP as a sensing material.

Citation P. Li; D. Zhang; C. Jiang; X. Zong; Y. Cao.Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors.. Biosens Bioelectron. 2017;98:6875. doi:10.1016/j.bios.2017.06.027

Related Elements

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Mercury

Mercury Bohr ModelSee more Mercury products. Mercury (atomic symbol: Hg, atomic number: 80) is a Block D, Group 12, Period 6 element with an atomic weight of 200.59. The number of electrons in each of mercury's shells is 2, 8, 18,32, 18, 2 and its electron configuration is [Xe] 4f14 5d10 6s2. The mercury atom has a radius of 151 pm and a Van der Waals radius of 209 pm. It is named after the planet Mercury and often referred to as "quicksilver" due to its appearance as a silvery liquid. Mercury has low melting and boiling points. It is a poor conductor of heat, but a fair conductor of electricity. Mercury is found both as a free element and in cinnabar, corderoite, and livingstonite ores.