Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device.

Title Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device.
Authors H.Jun Seo; W. Jeong; S. Lee; G.Dae Moon
Journal Nanoscale
DOI 10.1039/c8nr01429a
Abstract

We demonstrated a flexible resistive switching device based on ultrathin AgTe nanowire (NW) films and Au nanosheet (NS) electrodes by exploiting a monolayer assembly on the water surface for macroscale two-dimensional structures. Firstly, ultrathin TeNWs (diameter ? 10 nm) are rapidly assembled on the water surface as a form of monolayer and transferred to fabricate TeNW films on various substrates with any available size. An assembled TeNW film was used as a template to produce a AgTeNW film through chemical transformation. A well-aligned AgTeNW film device showed reversible resistive switching properties when the Ag composition of the silver telluride NW becomes stoichiometric AgTe. Additionally, a non-stoichiometric AgTeNW film shows an increased On/Off ratio. For a flexible memory device, ultrathin AuNSs (thickness ?20 nm) were adopted as working electrodes, since thermally deposited gold electrodes tend to crack under strain, which can fail to maintain the electrical properties. A paper-like flexibility of AuNS proved its capability as optimal electrodes of ultrathin AgTeNW film-based resistive memory devices.

Citation H.Jun Seo; W. Jeong; S. Lee; G.Dae Moon.Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device.. Nanoscale. 2018;10(12):54245430. doi:10.1039/c8nr01429a

Related Elements

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

Gold

See more Gold products. Gold (atomic symbol: Au, atomic number: 79) is a Block D, Group 11, Period 6 element with an atomic weight of 196.966569. The number of electrons in each of Gold's shells is 2, 8, 18, 32, 18, 1 and its electron configuration is [Xe]4f142 5d10 6s1. Gold Bohr ModelThe gold atom has a radius of 144 pm and a Van der Waals radius of 217 pm. Gold was first discovered by Early Man prior to 6000 B.C. In its elemental form, gold has a metallic yellow appearance. Gold is a soft metal and is usually alloyed to give it more strength.Elemental Gold It is a good conductor of heat and electricity, and is unaffected by air and most reagents. It is one of the least reactive chemical elements. Gold is often found as a free element and with silver as a gold-silver alloy. Less commonly, it is found in minerals as gold compounds, usually with tellurium.

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.

Related Forms & Applications