Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols.

Title Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols.
Authors N. Wang; C. Cai; X. He; S.F. Pang; Y.H. Zhang
Journal Spectrochim Acta A Mol Biomol Spectrosc
DOI 10.1016/j.saa.2017.11.058
Abstract

Hygroscopicity and volatility of secondary organic aerosol (SOA) are two important properties, which determine the composition, concentration, size, phase state of SOA and thus chemical and optical properties for SOA. In this work, magnesium acetate (Mg(Ac)2) aerosol was used as a simple SOA model in order to reveal relationship between hygroscopicity and volatility. A novel approach was set up based on a combination of a vacuum FTIR spectrometer and a home-made relative humidity (RH) controlling system. The striking advantage of this approach was that the RH and the compositions of aerosols could be obtained from a same IR spectrum, which guaranteed the synchronism between RH and spectral features on a sub-second scale. At the constant RH of 90% and 80% for 3000s, the water content within Mg(Ac)2 aerosol particles decreased about 19.0% and 9.4% while there were 13.4% and 6.0% of acetate loss. This was attributed to a cooperation between volatile of acetic acid and Mg2+ hydrolysis in Mg(Ac)2 aerosols, which greatly suppressed the hygroscopicity of Mg(Ac)2 aerosols. When the RH changed with pulsed mode between ~70% and ~90%, hygroscopicity relaxation was observed for Mg(Ac)2 aerosols. Diffuse coefficient of water in the relaxation process was estimated to be ~5×10-12m2·s-1 for the Mg(Ac)2 aerosols. Combining the IR spectra analysis, the decrease in the diffuse coefficient of water was due to the formation of magnesium hydroxide accompanying acetic acid evaporation in the aerosols.

Citation N. Wang; C. Cai; X. He; S.F. Pang; Y.H. Zhang.Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols.. Spectrochim Acta A Mol Biomol Spectrosc. 2018;192:420426. doi:10.1016/j.saa.2017.11.058

Related Elements

Magnesium

Magnesium Bohr ModelSee more Magnesium products. Magnesium (atomic symbol: Mg, atomic number: 12) is a Block S, Group 2, Period 3 element with an atomic mass of 24.3050. The number of electrons in each of Magnesium's shells is [2, 8, 2] and its electron configuration is [Ne] 3s2. The magnesium atom has a radius of 160 pm and a Van der Waals radius of 173 pm. Magnesium was discovered by Joseph Black in 1775 and first isolated by Sir Humphrey Davy in 1808. Magnesium is the eighth most abundant element in the earth's crust and the fourth most common element in the earth as a whole. Elemental MagnesiumIn its elemental form, magnesium has a shiny grey metallic appearance and is an extremely reactive. It is can be found in minerals such as brucite, carnallite, dolomite, magnesite, olivine and talc. Commercially, magnesium is primarily used in the creation of strong and lightweight aluminum-magnesium alloys, which have numerous advantages in industrial applications. The name "Magnesium" originates from a Greek district in Thessaly called Magnesia.

Related Forms & Applications