Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions.

Title Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions.
Authors Z. Pu; T. Liu; W. Zhao; X. Shi; Y. Liu; G. Zhang; W. Hu; S. Sun; S. Liao
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.9b23426
Abstract

Highly active catalyst for the hydrogen oxidation/evolution reactions (HOR and HER) plays an essential role for the water-to-hydrogen reversible conversion. Currently, increasing attention has been concentrated on developing low-cost, high-activity, and long-life catalytic materials, especially for acid media due to the promise of proton exchange membrane (PEM)-based electrolyzers and polymer electrolyte fuel cells. Although non-precious-metal phosphide (NPMP) catalysts have been widely researched, their electrocatalytic activity toward HER is still not satisfactory compared to that of Pt catalysts. Herein, a series of precious-metal phosphides (PMPs) supported on graphene (rGO), including IrP-rGO, RhP-rGO, RuP-rGO, and PdP-rGO, are prepared by a simple, facile, eco-friendly, and scalable approach. As an example, the resultant IrP-rGO displays better HER electrocatalytic performance and longer durability than the benchmark materials of commercial Pt/C under acidic, neutral, and basic electrolytes. To attain a current density of 10 mA cm, IrP-rGO shows overpotentials of 8, 51, and 13 mV in 0.5 M dilute sulfuric acid, 1.0 M phosphate-buffered saline (PBS), and 1.0 M potassium hydroxide solutions, respectively. Additionally, IrP-rGO also exhibits exceptional HOR performance in the 0.1 M HClO medium. Therefore, this work offers a vital addition to the development of a number of PMPs with excellent activity toward HOR and HER.

Citation Z. Pu; T. Liu; W. Zhao; X. Shi; Y. Liu; G. Zhang; W. Hu; S. Sun; S. Liao.Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions.. ACS Appl Mater Interfaces. 2020;12(10):1173711744. doi:10.1021/acsami.9b23426

Related Elements

Iridium

See more Iridium products. Iridium (atomic symbol: Ir, atomic number: 77) is a Block D, Group 9, Period 6 element with an atomic weight of 192.217. The number of electrons in each of iridium's shells is [2, 8, 18, 32, 15, 2] and its electron configuration is [Xe] 4f14 5d7 6s2. Iridium Bohr ModelThe iridium atom has a radius of 136 pm and a Van der Waals radius of 202 pm. Iridium was discovered and first isolated by Smithson Tennant in 1803. In its elemental form, Iridium has a silvery white appearance. Iridium is a member of the platinum group of metals.Elemental Iridium It is the most corrosion resistant metal known and is the second-densest element (after osmium). It will not react with any acid and can only be attacked by certain molten salts, such as molten sodium chloride. Iridium is found as an uncombined element and in iridium-osmium alloys. Iridium's name is derived from the Greek goddess Iris, personification of the rainbow, on account of the striking and diverse colors of its salts.

Palladium

Palladium Bohr ModelSee more Palladium products. Palladium (atomic symbol: Pd, atomic number: 46) is a Block D, Group 10, Period 5 element with an atomic weight of 106.42. The number of electrons in each of palladium's shells is 2, 8, 18, 18 and its electron configuration is [Kr] 4d10. The palladium atom has a radius of 137 pm and a Van der Waals radius of 202 pm. In its elemental form, palladium has a silvery white appearance. Palladium is a member of the platinum group of metals (along with platinum, rhodium, ruthenium, iridium and osmium). Elemental PalladiumPalladium has the lowest melting point and is the least dense of the group. Palladium can be found as a free metal and alloyed with other platinum-group metals. Nickel-copper deposits are the main commercial source of palladium. Palladium was discovered and first isolated by William Hyde Wollaston in 1803. Its name is derived from the asteroid Pallas.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Rhodium

See more Rhodium products. Rhodium (atomic symbol: Rh, atomic number: 45) is a Block D, Group 9, Period 5 element with an atomic weight of 102.90550. Rhodium Bohr ModelThe number of electrons in each of Rhodium's shells is [2, 8, 18, 16, 1] and its electron configuration is [Kr] 4d8 5s1. The rhodium atom has a radius of 134 pm and a Van der Waals radius of 195 pm. Rhodium was discovered and first isolated by William Wollaston in 1804. In its elemental form, rhodium has a silvery white metallic appearance. Elemental RhodiumRhodium is a member of the platinum group of metals. It has a higher melting point than platinum, but a lower density. Rhodium is found in ores mixed with other metals such as palladium, silver, platinum, and gold. Rhodium is primarily used as the catalyst in the three-way catalytic converters of automobiles it is also highly valued in jewelry. The name Rhodium originates from the Greek word 'Rhodon,' which means rose.

Ruthenium

See more Ruthenium products. Ruthenium (atomic symbol: Ru, atomic number: 44) is a Block D, Group 8, Period 5 element with an atomic weight of 101.07. Ruthenium Bohr ModelThe number of electrons in each of ruthenium's shells is [2, 8, 18, 15, 1] and its electron configuration is [Kr] 4d7 5s1. The ruthenium atom has a radius of 134 pm and a Van der Waals radius of 207 pm. Ruthenium was discovered by Jędrzej Śniadecki in 1807. It was first recognized as a distinct element by Karl Ernst Claus in 1844. Elemental RutheniumIn its elemental form, ruthenium has a silvery white metallic appearance. Ruthenium is a rare transition metal belonging to the platinum group of metals. It is found in pentlandite, pyroxenite, and platinum group metal ores. The name Ruthenium originates from the Latin word "Ruthenia," meaning Russia.

Related Forms & Applications