Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds.

Title Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds.
Authors P. Veerakumar; P. Thanasekaran; K.C. Lin; S. Bin Liu
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.07.065
Abstract

Rhenium nanoparticles (ReNPs) supported on ordered mesoporous carbon (OMC) as a catalyst (Re/OMC) through a solvent-evaporation induced self-assembly (ELSA) method were prepared. The synthesized heterogonous catalyst was fully characterized using X-ray diffraction, field emission transmission electron microscopy, N2 sorption, metal dispersion, thermogravimetric analysis, Raman, Fourier-transform infrared, and X-ray photon spectroscopies. In addition, the catalyst was applied to reduce the aromatic nitro compounds (ANCs) for the first time in aqueous media and the reactions were monitored by following the intensity changes in the UV-vis absorption spectra with respect to time. This method provides the advantages of obtaining a high rate constant (k), green reaction conditions, simple methodology, easy separation and easy workup procedures. Moreover, the catalyst can be easily recovered by centrifugation, recycled several times and reused without any loss of activity. The higher activity of this catalyst was attributed to higher dispersion and smaller particle size of ReNPs as observed from FE-TEM and XRD results.

Citation P. Veerakumar; P. Thanasekaran; K.C. Lin; S. Bin Liu.Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds.. J Colloid Interface Sci. 2017;506:271282. doi:10.1016/j.jcis.2017.07.065

Related Elements

Rhenium

See more Rhenium products. Rhenium (atomic symbol: Re, atomic number: 75) is a Block D, Group 7, Period 6 element with an atomic weight of 186.207. The number of electrons in each of rhenium's shells is 2, 8, 18, 32, 13, 2 and its electron configuration is [Xe] 4f14 5d5 6s2. Rhenium Bohr ModelThe rhenium atom has a radius of 137 pm and a Van der Waals radius of 217 pm. Rhenium was discovered and first isolated by Masataka Ogawa in 1908. In its elemental form, rhenium has a silvery-white appearance. Rhenium is the fourth densest element exceeded only by platinum, iridium, and osmium. Rhenium's high melting point is exceeded only by those of tungsten and carbon.Elemental Rhenium Rhenium is found in small amounts in gadolinite and molybdenite. It is usually extracted from the flue dusts of molybdenum smelters. The name Rhenium originates from the Latin word 'Rhenus' meaning "Rhine" after the place of discovery.

Related Forms & Applications