Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae.

Title Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae.
Authors J.L. Wagner; E. Jones; A. Sartbaeva; S.A. Davis; L. Torrente-Murciano; C.J. Chuck; V.P. Ting
Journal Dalton Trans
DOI 10.1039/c7dt03318d
Abstract

This work demonstrates the potential of zeolite Y supported nickel phosphide materials as highly active catalysts for the upgrading of bio-oil as an improved alternative to noble metal and transition metal sulphide systems. Our systematic work studied the effect of using different counterions (NH4+, H+, K+ and Na+) and Si/Al ratios (2.56 and 15) of the zeolite Y. It demonstrates that whilst the zeolite counterion itself has little impact on the catalytic activity of the bare Y-zeolite, it has a strong influence on the activity of the resulting nickel phosphide catalysts. This effect is related to the nature of the nickel phases formed during the synthesis process Zeolites containing K+ and Na+ favour the formation of a mixed Ni12P5/Ni2P phase, H+ Y produces both Ni2P and metallic Ni, whereas NH4+ Y produces pure Ni2P, which can be attributed to the strength of the phosphorus-aluminium interaction and the metal reduction temperature. Using quinoline as a model for the nitrogen-containing compounds in bio-oils, it is shown that the hydrodenitrogenation activity increases in the order Ni2P > Ni0 > Ni12P5. While significant research has been dedicated to the development of bio-oils produced by thermal liquefaction of biomass, surprisingly little work has been conducted on the subsequent catalytic upgrading of these oils to reduce their heteroatom content and enable processing in conventional petrochemical refineries. This work provides important insights for the design and deployment of novel active transition metal catalysts to enable the incorporation of bio-oils into refineries.

Citation J.L. Wagner; E. Jones; A. Sartbaeva; S.A. Davis; L. Torrente-Murciano; C.J. Chuck; V.P. Ting.Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae.. Dalton Trans. 2018. doi:10.1039/c7dt03318d

Related Elements

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Phosphorus

Phosphorus Bohr ModelSee more Phosphorus products. Phosphorus (atomic symbol: P, atomic number: 15) is a Block P, Group 15, Period 3 element. The number of electrons in each of Phosphorus's shells is 2, 8, 5 and its electronic configuration is [Ne] 3s2 3p3. The phosphorus atom has a radius of 110.5.pm and its Van der Waals radius is 180.pm. Phosphorus is a highly-reactive non-metallic element (sometimes considered a metalloid) with two primary allotropes, white phosphorus and red phosphorus its black flaky appearance is similar to graphitic carbon. Compound forms of phosphorus include phosphates and phosphides. Phosphorous was first recognized as an element by Hennig Brand in 1669 its name (phosphorus mirabilis, or "bearer of light") was inspired from the brilliant glow emitted by its distillation.

Related Forms & Applications