Zinc-aluminum oxide solid solution nanosheets obtained by pyrolysis of layered double hydroxide as the photoanodes for dye-sensitized solar cells.

Title Zinc-aluminum oxide solid solution nanosheets obtained by pyrolysis of layered double hydroxide as the photoanodes for dye-sensitized solar cells.
Authors Z. Xu; J. Shi; M.Sohail Haroone; W. Chen; S. Zheng; J. Lu
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2018.01.037
Abstract

Due to the superiority of metal-doped ZnO compared to TiO2, the Zn-M (M?=?Al3+, Ga3+, Cr3+, Ti4+, Ce4+) mixed metal oxide solid solutions have been extensively studied for photocatalytic and photovoltaic applications. In this work, a systematic research has proceeded for the preparation of a zinc-aluminum oxide semiconductor as a photoanode for the dye-sensitized solar cells (DSSCs) by a simple pyrolysis route with the Zn-Al layered double hydroxide (LDH) as a precursor. The Zn-Al oxide solid solution has been applied for DSSCs as an electron acceptor, which is used to study the influence of different Al content and sintering temperature on the device efficiency. Finally, the Zn-Al oxide solid solution with calcination temperature 600?°C and Al 27 at.% content exhibits the best performance. The photoelectric efficiency improved 100 times when the Al3+ content decreased from 44 to 27 at.%. The ZnxAlyO solid solution show a reasonable efficiency as photoanode materials in DSSCs, with the best preliminary performance reported so far, and shows its potential application for the photovoltaic devices.

Citation Z. Xu; J. Shi; M.Sohail Haroone; W. Chen; S. Zheng; J. Lu.Zinc-aluminum oxide solid solution nanosheets obtained by pyrolysis of layered double hydroxide as the photoanodes for dye-sensitized solar cells.. J Colloid Interface Sci. 2018;515:240247. doi:10.1016/j.jcis.2018.01.037

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Zinc

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.

Related Forms & Applications