Molybdenum-100 Metal Isotope

Linear Formula:

100Mo

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Molybdenum 100 Metal
MO-M-01-ISO.100
Pricing > SDS > Data Sheet >

Isotopic Data

N

42

Half-Life

Observationally stable

Nuclear Spin (I)

0+

Sn (keV)

8290  6

Sp (keV)

11146  12

Abundance

9.63 3%

ENSDF Citation

NDS 81, 1 (1997)

Molybdenum-100 Metal Isotope Properties (Theoretical)

Appearance Solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Molybdenum-100 Metal Isotope Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Molybdenum-100 Metal Isotope

Molybdenum 100 Metal (Molybdenum-100) is a stable (non-radioactive) isotope of Molybdenum. It is both naturally occurring and a produced by fission. Molybdenum 100 Metal is one of over 250 stable Metallic isotopes produced by American Elements for biological and biomedical labeling, as target materials and other applications. Molybdenum Metal 100 additionally has special application in extrinsic labeling of food for determination of human nutrition requirements. Molybdenum Metal is also available in ultra high purity and as nanoparticles. For thin film applications it is available as rod, pellets, pieces, granules and sputtering targets and as either an ingot or powder. Molybdenum Metal 100 isotopic material is generally immediately available. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Molybdenum-100 Metal Isotope Synonyms

Mo-100

Chemical Identifiers

Linear Formula 100Mo
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

TODAY'S TOP DISCOVERY!

November 26, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions