Nickel Oxide - Yttria Stabilized Zirconia (8 Mol. %) Anode

66% NiO / 34% YSZ (8% Yttrium)

Linear Formula:

NiO-Y2O3-ZrO2

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% NiO-YSZ
NIO-YSZ-02
Pricing > SDS > Data Sheet >
(3N) 99.9% NiO-YSZ
NIO-YSZ-03
Pricing > SDS > Data Sheet >
(4N) 99.99% NiO-YSZ
NIO-YSZ-04
Pricing > SDS > Data Sheet >
(5N) 99.999% NiO-YSZ
NIO-YSZ-05
Pricing > SDS > Data Sheet >

Nickel Oxide - Yttria Stabilized Zirconia (8 Mol. %) Anode Properties (Theoretical)

Appearance Solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Nickel Oxide - Yttria Stabilized Zirconia (8 Mol. %) Anode Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A

About Nickel Oxide - Yttria Stabilized Zirconia (8 Mol. %) Anode

Nickel Oxide - Yttria Stabilized Zirconia Anode is a highly insoluble thermally stable Nickel source suitable for many applications. Oxide compounds are not conductive to electricity. However, certain perovskite structured oxides are electronically conductive finding application in the cathode of solid oxide fuel cells and oxygen generation systems. They are compounds containing at least one oxygen anion and one metallic cation. They are typically insoluble in aqueous solutions (water) and extremely stable making them useful in ceramic structures, from as simple as clay bowls to advanced electronics and light weight structural components in aerospace and electrochemical applications such as fuel cells in which they exhibit ionic conductivity. Metal oxide compounds are basic anhydrides and can therefore react with acids and with strong reducing agents in redox reactions. Yttria Stabilized Zirconia is available both partially and fully stabilized. Grades are available for applications include structural ceramics for turbine blades and anti-ballistic and armour ceramics and ionically conductive uses. A variety of surface areas can be produced. Forms include tape casting powder, screen printable ink and plasma spray/thermal spray powder. Proprietary formulations can be produced under non-disclosure arrangements. Yttrium has the highest thermo-dynamic affinity for oxygen, useful in ceramics for crucibles for molten reactive metals, in florescent phosphors, computer displays and automotive fuel sensors. Yttria stabilized zirconia is used in high temperature applications and as an electrolyte in fuel cells. Additional technical information, such as resistivity and ink rheology data, and safety (MSDS) information are also available.

Nickel Oxide - Yttria Stabilized Zirconia (8 Mol. %) Anode Synonyms

NiO-YSZ, Nickel cermet

Chemical Identifiers

Linear Formula NiO-Y2O3-ZrO2
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Nickel

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Yttrium

See more Yttrium products. Yttrium (atomic symbol: Y, atomic number: 39) is a Block D, Group 3, Period 5 element with an atomic weight of 88.90585. Yttrium Bohr ModelThe number of electrons in each of yttrium's shells is [2, 8, 18, 9, 2] and its electron configuration is [Kr] 4d1 5s2. The yttrium atom has a radius of 180 pm and a Van der Waals radius of 219 pm. Yttrium was discovered by Johann Gadolin in 1794 and first isolated by Carl Gustav Mosander in 1840. In its elemental form, Yttrium has a silvery white metallic appearance. Yttrium has the highest thermodynamic affinity for oxygen of any element. Elemental YttriumYttrium is not found in nature as a free element and is almost always found combined with the lanthanides in rare earth minerals. While not part of the rare earth series, it resembles the heavy rare earths which are sometimes referred to as the "yttrics" for this reason. Another unique characteristic derives from its ability to form crystals with useful properties. The name yttrium originated from a Swedish village near Vaxholm called Yttbery where it was discovered.

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Recent Research

TODAY'S TOP DISCOVERY!

November 14, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions